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ABSTRACT:

In this work we have reported the evolutioy
of rough surface by different competitive grg
model in 1+1 dimension. The competitig
mainly been made between Random D€P
Ballistic Deposition (RD-BD) and Random Depo
with Surface Relaxation-Ballistic Deposmon (RD
BD) model. The influence of
mechanism on the critical ti
has been studied in detail
values (p) for a typical

Different
exponent, growth

different growth mo

KEYWORDS: Scaling , Djfcrete surface growth model,
Ballistic deposition, Roughness

INTRODUCTION:

From last few decades analysis of morphology of
surface growth and evolution of interfaces, is one of the
topic of attraction for the studies of different physical
and chemical phenomena that includes snow falling on a
slanted glass window, piling of sand on a smooth surface,
propagation of fluid or fire front through any paper

(D.B.) r

kind of particles obeying same growth mechanism [1-3]
b) Surface growth considering deposition of a single

c) Surface growth considering deposition of two or
more different kind of particles [6].

Also depending upon the growth mechanism,
there are different discrete models which adequately
describe surface growth that includesrandom deposition
(RD), ballistic deposition (BD), random deposition with
surface relaxation (RDSR)solid on solid model
(SOS),body centered solid on solid model (BCSOS) and
many others [7-9].0ther than RD model, all the models
are developed on some simple stochastic growth rule
obeying nearest neighbor interaction. These models best
describe the surface growth involving one kind of
particle.To obtain a more realistic surface for describing
different natural phenomena more accurately people are
developing models called competitive growth where it is
considered that a definite growth is taking place with a
specific probabilities say p whereas other is taking place
with probability (1-p) [10, 11].

The values of the different scaling exponents for
the various universality classes have been reported for
1+1 or 2+1 dimension with like particles or particles
with different shapes and sizes obeying certain growth

8|Page


mailto:nilju82@gmail.com

NOVATEUR PUBLICATIONS

International Journal Of Research Publications In Engineering And Technology [IJRPET]

ISSN: 2454-7875
VOLUME 2, ISSUE 10, Oct. -2016

mechanism or some competitive growth models
[12].Braunstein and his co-worker studied the
probability dependence of different scaling exponent for
their competitive growth model that includes single type
of particle [13].Numerical studyof the ballistic model for
both the sliding as well as sticky particle in different
dimensions has been done [14]. Chame and his co-
workers have studied the crossover effects in a discrete
deposition model with a particular scaling [15]. Muraca
et al. reported the universal behavior of the coefficients
of the continuous equation in competitive growth
models [16]. However, regarding the deviation of the
university class behavior of these different exponents for
competitive as well as single discrete growth process
have not been reported so much. Only D. Jana etal.
reported the non-universal behavior of scaling
exponents corresponding to the height fluctuation in
(1+1) dimension for a nonlinear discrete growth model
that involves extended particles [17].

Motivated by above mentioned literature study,
here two kinds of competitive growth model RD-BD
(model 1) and RDSR-BD (model 2) have been simulategd
in 1+1 dimension considering a single type par
along with pure RD, RDSR and BD mod
corresponding scaling exponents have bee
and tabulated for different system sizes. AlsO
porosity as well as the growth velocity of the produc8
surface has been calculated and depg e of all these
parameters on fractional probahji reported.
reported

assumption
Section 3,

is depicted here.
followed by
corresponding dis usion in section 4

and 5 respectively.

MODELING AND SIMU
The roughness of a growing surface can be
characterized in terms of W(L,t) which is defined as:

WO = [F5E 00 - HOY

(1)
Where L is the system size,h(it) is the height of
the ith site at time t and H(t) is the mean heightof
the surface given by:

H() = 1Xb k(i t)
(2)

For RD model particles are deposited without
any surface correlation, hence interface width
continuously increases with time.

For BD and RDSR model particles are deposited
with surface correlation, hence interface width
increaseswith time initially and saturates after a certain
time (t,) called critical time or cross-over time. Thus the
time evolution of inter idth has two regions

W(t) « tPfor t

(3)

and BD models consider surface
orrelation, stillthe values of these exponents are
different for them as RDSR model falls into linear
universality class whereas the BD model falls into
ponlinear universality class.

athematical form of basic continuum growth
ation may be written as follows -

20 = GlAGx, ] +1(x, )

(4a)
Where, G[h(xt)] is the deterministic growth
term and n(x,t)is the noise term.
For linear class G[h(x,t)] = v(V?h) and we get

Edward-Wilkinson (EW) [6]equation as

D) — y(92h) + (e, 1)

(4b)

For nonlinear class G[h(x,t)] = v(V?h) +
(1/2)(Vh)? and we getKardar-Parisi-Zhang (KPZ) [19]
equation as
PEY = v(V2h) + 5 (Vh)? +n(x,)(5)

Here v is called surface tension which causes the
surface to relax and A represents lateral growth
coefficient.

Here in this work, we have studied different
discrete growth models namely RD, RDSR, BD and
different competitive growth models in 1 + I dimension
for deposition of single kind of particles.
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In all the three cases at any instant ¢, a certain site i
having height h(i) has been chosen randomly and a small
particle is released. In case of RD the particle falls and
sticks exactly to the position it was released upon thus
increasing its height by one unit, i.e. new height of the it"
site would be h(i, t+1) = h(i, t) + 1. In the second case i.e.
in RDSR model the particle so chosen falls on the it site
but can be relaxed to its nearest neighbor if the height of
the neighbor is lesser. In case of BD the randomly chosen
particle can stick to the nearest neighbor site where it
finds the maximum height.

For the competitive growth likeX-Y model
(where X, Y stands for RD, BD, RDSR), some deposited
particles follow X mechanism with probability p and
others follow Y mechanism with probability (1-p).
In RDSR-BD model, RD is replaced by RDSR and same
deposition parameter were used.

For our study, deposition following competitive
growth was made for two different lattice size L = 64 and
L = 128for different values of probabilityp. The initial
height was made zero. Thetime of deposition was
106with one particle deposited per unit time. The valyg
of fractional probability p, was varied from 0 to 1 in g
of 0.25. The value of interface width and meag
was recorded after each interval of time.

RESULTS:

Fig.1(a-c) shows the variation g
to In(t) for all the three models fg
interface
Alues ~ 0.5

= 1suggests that the
growth is completely by random deposition
and p = 0 corresponds s undergoes pure ballistic
deposition.

The same characteristics for RDSR-BD competitive
model has been shown in Fig.3 (a, b). The corresponding
height profile for a particular system size L = 64 and for
all p values has been shown inFig.4.

Table 2 and Table 3 summarize the different
scaling exponents that can be obtained from Fig.2 and
Fig.3. In all the cases it is seen that there exists two
different slopes and thus two distinct values of growth

exponent f also two different crossover times can be

found. For RD-BD model at the initial stage of growth up
to 1st crossover time t., the f value matches well with
that is expected from pure RD model for all values of p
(except p = 1). As t>ty,theslope changes and takes the
value up to a second crossover time t,. that is closed to
the value reported for pure BD model. All the values of
t«z  andteincrease monotonically as the growth
approaches from BD to RD model however for RDSR-BD
model it doesn’t show any monotonic variation.Fig.5
shows the variation of W;,4fith values of p for both the
competitive growth mo been seen that the Wi
increases with p fo -BD model whereas it shows
reverse order w, system undergoes RDSR-BD

both the competitive growth models and for both the
system size L. Fig.7 shows the variation of owith p for
Re sagae growth models and system size. It is seen that ¥
Eases as system departs more and more from BD for
the system sizes and for both the growth mechanism.
Also porosity shows same variation as expected because
except BD in all other model particle either sticks to the
initial site or finds site with lowest height.

DISCUSSION:

Based on the above results it can be easily
concluded that the growth is not being governed by any
single process as shown by Jana and Mandal[17]. Thus
the growth in the individual time
region can be expressed as
w(L, t)~ tP1 (t < t,g)

(8a)
w(L, )~ tF2 (t,g < tyz)
(8b)
Weqe (L, )~ L (E > tyz)
(8c)
with z1 = a/f81and z2 = a/f32
The subscript ‘1 and ‘2’ stands for
corresponding critical time region.
Thus the complete growth phenomena should
be described by the linear sum of these two terms
and thus:
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wa,o =1 |fi () + £ ()
9)

So it can be concluded that for the kinetic
growth model as it does not follow any unique scaling
relation it thus losses its universality class. It should be
noted that from Table 2 and 3, one can see that for RD-
BD model the initial growth exponent has the value that
is almost same as that for pure RD model but as time
evolves [ takes the value closed to 0.33 which is same if
the system follows pure BD model. Thus here the growth
can be taken to be linear sum of the RD model and BD
model. It may seems to us that initially the system size is
much larger compared to numbers of particles thus
effectively newly generated one or two particles find
sites randomly and thus effectively RD takes place thus
in this time regime f has values closed to that expected
from pure RD model. As time evolves surface correlation
effects come to play and system begins to follow BD
model. However this assumption doesn’t hold for the
second model where initially growth exponent gives
value closed to pure BD model and for higher time it
changes to the values expected from the pure RQ
model. Thus no definite conclusions can be dra
these two results except the fact that none of
mechanisms even if it is pure RDSR or BD Tan
described by single sets of scaling exponent which is
reported previously.

The particle flux is same fg

for both the competiti els can be seen and it is
shown that for both thgPtases « first increases then
decreases as system departs more and more from BD
model. Variation of dynamic exponent with p in both the
critical time regime for both competitive models also
shows an overall decrease in the z values for both the

time region.

CONCLUSION:
This work reports a comparative simulation
study of time evolution of a rough surface generated by

three different mechanisms namely random deposition,
that with surface relaxation and ballistic deposition. It
has been found that the growth cannot be described by
any existing scaling relation uniquely and thus losing its
universality. There exists in case of both RDSR and BD
three distinct growth regimes separated by two critical
times. Three regimes behave differently being described
by different scaling relations. Thus the entire growth has
been described by the linear sum of the two growth
equations. Different value two growth exponents
within two growth ave been explained
physically. It is sho

Different parameters
ave direct influence
calculated
e values of
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FIGURE CAPTIONS:
Figure-1:Variation of In(W)withln(¢t) for different
sizes when deposition process follows(a) RD, (b)
RDSR and (c) BD model

Figure-2: Variation of In(W) with In(t) when
deposition process follows RD-BD competitive
growth model for different system sizes (a) L = 64,
(b)L=128

Figure-3: Variation of In(W) with In(t) when
deposition process follows RDSR-BD competitive
growth model for different system sizes (a) L = 64,
(b)L=128

Figure-4: Interface generated due to deposition of
3000 particles on a particular system size L = 64 f
different competitive models for different valy
fractional probability p
Figure-5: Variation Wswithp for differen
competitive growth model for L = 64 andL = 128
Figure-6: Variation of v with p for
(b) RDSR-BD models

Figure-7: Variation of oy

(b) L =128 when growr follo

BD models
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Table — 3: The values of different scaling exponents for different system sizes when deposition
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Table I: The values of different scaling exponents for different system sizes when
deposition process follows RD, RDSR and BD model

Random Deposition (RD)

L B )] W f Iy
16 0497 -
32 0497 —
64 0502 -
12§ 0.501 —
Random Deposition with Surface Relaxation (RDSR)
16 0466 0.245 1443 6 273
32 0478 0.247 1.928 16 1241
64 0476 0.249 2586 32 7627
128 0476 0252 3579 62 51888
Ballistic Deposition (BD)
16 0.582 0.337 3214 59 166
32 0.558 0.335 4610 158 784
64 0.583 0.324 5.905 217 3748
128 0.536 0.336 §.837 1061 15445

Table - 2: The values of different scaling exponents for different system sizes when

deposition process follows RD-BD competitive growth model

L P B1 5} Wiar Ly Ly a a1 oz
64 0.00 0.561 0333 6.180 288 3622 051 091 153

025 059 033 668 307 4115 | (53 095 162
050 0551 033 7761 81 6832 | gs0 093 1%
075 0538 033 9%5 788 108 | g oo 1%0
100 0498 — —  —

128 000 0.555 0332 8821 796 17288

025 0539 0322 9.592 867 27032
050 0521 0327 11009 1121 39729

075 0.539 0321 14028 1655 71851

1.00 0.500 e ——
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