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ABSTRACT:  
 This article is devoted to problems of 
cryptanalysis. Cryptographic analysis 
results, got from using of correlation 
cryptanalysis method to algorithm of the 
flow crypto operation, founded on register of 
the shift with feedback, were presented in 
work. For estimation of the flow crypto 
operation algorithm’s crypto stability by 
correlation cryptanalysis method, number 
of important tasks was defined, purposes 
and problems of the study were determined. 
As a result of defined tasks decision, 
mathematical model and software of 
correlation cryptanalysis method to flow 
crypto operation to filtering LILI-128 – were 
developed.  Results has shown, that 
characteristic of correlation immunity of 
filtering functions, used in filtering 
generator, provide stability to correlation 
cryptanalysis method. Execution with big 
probability of stat-analogical function, 
defined in process of cryptanalysis, raises 
the efficiency of cryptanalysis.  

Proposed mathematical model and 
software can be used for estimation of 
stability of the algorithm of the flow crypto 
operation to correlation cryptanalysis, as 
well as in scholastic purpose. 
KEYWORDS: cryptanalysis, stream ciphers, 
shift registers, LILI-128, filtering, 
correlation 

 
INTRODUCTION: 

Ensuring information security requires 
relatively fast cryptographic tools, not only as 
the exchange of documentary information 
transmitted over the network increases, but 
also as the exchange of multimedia, that is, video 
and audio, increases. Therefore, the use of 
stream encryption algorithms in local and global 
networks has become an urgent problem[1,2]. 

When analyzing stream encryption 
algorithms, in contrast to block encryption 
algorithms, although many original ideas and 
directions for creating stream encryption 
cryptographic algorithms were developed in 
this area, there is no single way to express their 
commonality[3].  
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Therefore, it is important to conduct 
research in the field of continuous encryption 
algorithms and modern methods for assessing 
their cryptographic strength. 

Due to the design features of continuous 
encryption algorithms, the most common type 
of attack is a correlation attack. If a non-linear 
function transfers information about its internal 
components to the output, the work required to 
open such a system is greatly reduced. However, 
such a function is always available[4]. According 
to this axiom, correlation attacks use the 
correlation between a sequence leaving an 
encryption scheme and a sequence leaving 
registers[5,6,7].  

 
METHODOLOGY: 
2.0  Correlation cryptanalysis method for 
filter generators 

There are several methods of correlation 
cryptanalysis applied to continuous encryption 
algorithms based on filter generators. 
Underlying these approaches is the use of linear 
statanalogs of the filtering function. 

Suppose that in a filter generator there is 
a linear feedback shift register of length n, 
φ(x1,...,xn) = cnx1 ⊕ … ⊕ c1xn is the feedback 
function of the register, C(D) = cnDn ⊕ … ⊕ c1D 
⊕ 1 is its characteristic multiplication, and f 
(x1,...,xn) is a filtering function, let the linear 
statanology of the function f(x) be l(x) = xi1 ⊕ xi2 
⊕ … ⊕ xik ⊕ b . The probability that the 
function f (x) and its statonology coincide with 
l(x)  is: Prob{f(x) = l(x)} = 1/2 + a/2 [5]. Where   

 –  is the maximum value of 
the normalized modulus of the Fourier 
coefficient. We call this given generator 1st 
generator. Filter generator with a similar shift 
register, but with a filter function l(x). This 
generator is called the 2nd generator. The 
following symbols {y(t)} and {y’(t)} denote the 
output sequences generated by the generators 1 
and 2, respectively, when the initial filled state 
is the same (Figure 1). 

 

 Figure 1. Scheme of 1st and 2nd generators  
l(x) = xi1 ⊕ xi2 ⊕ … ⊕ xik ⊕ b depending 

on the value of the free variable b (b =0 ва b = 1) 
in linear stanology, the operation of the 2nd 
generator can be expressed using one of the 
schemes shown in the figure 2.  

 Figure 2. Operating status of 2nd generator 
 The series Sij∞} are different recurrence 
sequences formed by one shift register with a 
feedback function φ(x1,...,xn), length n. From the 
known results on the linear complexity of the 
sum of linear recurrence sequences and the 
linear complexity of inverted sequences, it can 
be seen that the length of the sequence {y’(t)} is 
n, and the feedback function is still equal to 
φ(x1,...,xn) = cnx1 ⊕ … ⊕ c1xn or length n + 1  and 
multiplication of the characteristic 
C’(D) = cnDn+1⊕(cn⊕cn-1)Dn⊕(cn-1⊕cn-2)Dn-
1⊕…⊕(c2⊕c1)D2⊕(c1⊕1)D⊕1  (1) 
which is made using offset sizes. Where ci is the 
coefficient of the feedback φ(x1,...,xn) function. 
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Thus, instead of the 2nd generator, we can take 
a look at the equivalent 3-generator (Figure 3). 
Therefore, in the case b = 0, the register length 
is L=n, and the feedback function is φ’(x) = φ(x), 
and in the case b = 1, the register length is 
L=n+1, and the coefficient of the feedback 
function C’(D) is determined from the 
characteristic coefficient of the polynomial. 
Then the output sequences of 2nd generators 
and 3rd generators coincide and are equal to 
{y’(t)}, and then the following equation holds for 
the elements of the output sequences of 1st 
generators and 2nd generators: Prob{ y(t)= y’(t)} 
= 1/2 + a/2.  

 Figure 3. Scheme of generator 3 
 If the 1st generator is used to encrypt 
some “ordinary” information and the parameter 
а is large enough, the 3rd generator can be used 
as a decoder, and errors can be eliminated 
depending on the capabilities of the language.  

Consider a situation that has the form: 
The feedback function of the above approach 
the 1st  generator φ(x1,...,xn) is unknown, and the 
filter function f(x)  is as follows: f(x1,...,xn) = 
x1*x2*…*xm ⊕ xm+1 ⊕ xm+2 ⊕…⊕ xn.         
Where m ≤ n, n is the length of the displacement 
dimensions. The linear statonology of the 
function f(x) is the function l(xm+1,…,xn) = xm+1 ⊕ 
xm+2 ⊕…⊕ xn with the probability of 
coincidence Prob{f(x) = l(x)} = 1 - 2-m . In 
particular, for m ≥ 5, the probability is Prob{f(x) 
= l(x)} > 0,969. 
 Thus, if the filtering function f(x) in a 1st 
generator is replaced by its linear statistical 
analog, the resulting 2nd generator is equivalent 
to a 3rd generator, i.e. there is an n-length shift 
register with the same feedback function as 

before. In this case, the bits of the output 
sequence {y’(t)}  of the 3rd generator correspond 
to the bits of the sequence {y(t)} with a 
probability of 1 – 2-m. In this case, assuming that 
all 2n bits of the sequence {y(t)} correspond to 
bits of the sequence {y’(t)}, we can construct a 
feedback linear displacement register (3rd 
generator) at the output of the 1st  generator. 
Then this generator is used as a decoder with 
the correct decryption probability of 1 – 2-m. 
Therefore, if the function f(x) has certain 
properties, the operation of the 1st generator 
can be completely restored, that is, the unknown 
feedback function and the initial state of the 
register can be determined. As a rule, to assess 
the reliability of the continuous encryption 
algorithm, the cryptanalyst is informed about 
the gamma sequence and internal structure of 
the generator, which come from a generator of a 
certain length. That is, the length of the register 
used in the generator, the feedback, and the 
appearance of the filter function are known. 
 Based on this, using the two above 
approaches, the method of correlation 
cryptanalysis is applied to the filter generator as 
follows. 
 Example 1. Let the above 1 be a 
generator (Figure 4). It is known that this 
generator has an offset register of length 7 and 
a filter function f(x) as follows: 

f(x) = x1 ⊕ x2 * x3 * x4 * x5 * x6 ⊕ x7 
The φ feedback function is as follows: 

φ(x1,…,x7) = x1⊕ x2 ⊕ x3 ⊕ x6 
The initial filled state of the generator is 
unknown. 

 Figure 4. Filtering generator 
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 However, at least 14 consecutive bits of 
the output sequence {y(t)} are specified, let be: 
00101001110010. The purpose of the analysis 
is to find the initial state of the register. 
 The linear statanology of the filter 
function f(x) is the function l(x) = x1 ⊕ x7. Since 
m = 5 for this function, the probability of 
matching the filtering function f(x) and its linear 
statanology is P{f(x) = l(x)} = 1–2-m  = 1 – 2-5 ≈ 
0,969. In this case, the length of the register of 
the generator 2 corresponds to the length of the 
register of the generator 1, which is equal to 7. 
Therefore, the bit of the output sequence of the 
2nd generator {y’(t)} corresponds to the 
corresponding bit of the output sequence of the 
1st  generator {y(t)} with a probability p = 1 – 2-
5 ≈ 0,969 . 
 Feedback function of the 2nd generator is 
φ(x1,…,x7) = x1⊕ x2 ⊕ x3 ⊕ x6. Accordingly, its 
characteristic multiplicity is as follows:  

C(D) = D7 ⊕ D6 ⊕ D5 ⊕ D2 ⊕ 1         (2) 
 In this case, it is possible to completely 
restore the full operation of the 1st generator, 
that is, the initial state of the registers. To do 
this, it is used to coordinate the entire internal 
state of the shift register in the 2nd generator 
(including the initial filled state) with the 
corresponding internal state of the register in 
the 1st generator. The sequence leaving the 2nd 
generator is the sequence {y’(t)}. In this case, all 
14 bits of the sequence {y’(t)} correspond to the 
corresponding bits of the sequence {y(t)}, and 
corresponds to register filling in the 2nd 
generator at time t  x(t) = (xt, xt+1,…,xt+6), we get:  
y(t) = y’(t) = l(x(t)) = l(xt, xt+1,…,xt+6) = xt ⊕ xt+6     

(3) 
However, for all t > 6, the following 

recurrence expression is suitable in accordance 
with φ(x1,…,x7) = x1⊕ x2 ⊕ x3 ⊕ x6  : xt = xt-7 ⊕ 
xt-6 ⊕ xt-5 ⊕ xt-2. 

The result is a system of linear equations 
that determines the initial values x0, ... , x6 of 1st  
and 2nd generators. 

The output bits of the 2nd generator 
sequence y’(t) are calculated using a linear filter 
l(x) = x1 ⊕ x7. 
 Thus, the following system of equations 
(4) is suitable: 

x0 ⊕ x6 = 0; 
x1 ⊕ x7 = 0; 
x2 ⊕ x8 = 1; 

                 x3 ⊕ x9 = 0;             (4) 
  x4 ⊕ x10 = 1; 
  x5 ⊕ x11 = 0; 
  x6 ⊕ x12 = 0. 

Выражая значения x7 ,…, x12 через x0 ,…, 
x6, можно создать следующую систему 
уравнений (5): 
x7 = x0 ⊕ x1 ⊕ x2 ⊕ x5 ;  
x8 = x1 ⊕ x2 ⊕ x3 ⊕ x6 ;  
x9 = x2 ⊕ x3 ⊕ x4 ⊕ x7 = x2 ⊕ x3 ⊕ x4 ⊕ x0 ⊕ x1 
⊕ x2 ⊕ x5 = x3 ⊕ x4 ⊕ x0 ⊕ x1 ⊕ x5;  
x10 = x3 ⊕ x4 ⊕ x5 ⊕ x8 = x3 ⊕ x4 ⊕ x5 ⊕ x1 ⊕ x2 
⊕ x3 ⊕ x6 = x4 ⊕ x5 ⊕ x1 ⊕ x2 ⊕ x6;  
x11 = x4 ⊕ x5 ⊕ x6 ⊕ x9 = x4 ⊕ x5 ⊕ x6 ⊕ x3 ⊕ x4 
⊕ x0 ⊕ x1 ⊕ x5 = x6 ⊕ x3 ⊕ x0 ⊕ x1;    (5) 
x12 = x5 ⊕ x6 ⊕ x7 ⊕ x10 = x5 ⊕ x6 ⊕ x7 ⊕ x10 = x5 
⊕ x6 ⊕ x7 ⊕ x4 ⊕ x5 ⊕ x1 ⊕ x2 ⊕ x6 =  
= x7 ⊕ x4 ⊕ x1 ⊕ x2= x0 ⊕ x1 ⊕ x2 ⊕ x5 ⊕ x4 ⊕ 
x1 ⊕ x2= x0 ⊕ x5 ⊕ x4. 

 Figure 5. Generator filter’s structure 
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As a result, we have a system of linear 
equations (6) that connects the values x0, ... , x6 
with the initial signs y’(t). 
x0 ⊕ x6 = 0; 
x0 ⊕ x2 ⊕ x5 = 0; 
x1 ⊕ x3 ⊕ x6 = 1; 
x0 ⊕ x1 ⊕ x4 ⊕ x5 = 0;      (6) 
x1 ⊕ x2 ⊕ x5 ⊕ x6 = 1; 
x0 ⊕ x1 ⊕ x3 ⊕ x5 ⊕ x6 = 0; 
x0 ⊕ x4 ⊕ x5 ⊕ x6 = 0. 

Solving these equations, unknown values 
can be determined as follows: x0 = 1, x1 = 1, x2 = 
1, x3 = 1, x4 = 0, x5 = 0, x6 = 1. Therefore, the initial 
position of the shift register in the 1st generator 
is (1111001). After checking, can see that the 
result is correct. As a result, the initial circuit of 
generator 1 will be as shown in Figure 5. 

 
2.2 Using correlation immunistic function in 
filter generators 

The use of the correlation-immune 
function as a filtering function in filtering 
generators does not significantly affect the 
complexity of cryptanalysis. This is because 
filter generators use a single register. 

Theorem 1. Assume that the key current 
generator is a filter generator that uses the 
Boolean function of correlation immunity as a 
filter function. In this case, it is possible to create 
a filter generator that has the same shift register 
(that is, the register length and feedback 
function are the same), but the filter function is 
not correlation-immune, in which the developed 
sequence corresponds to the output sequence 
from the primary generator (initial state 
register will be different) [5]. 
 Proof. Suppose that the length of the 
register of the primary generator is n, the 
feedback function is φ(x1,...,xn) = cnx1 ⊕…⊕ c1xn, 
and the filter function is f (x1,...,xn). xt is the state 
in which the first register cell is filled at time t, 
yt is the symbol of the output sequence 

generated from the original generator at the 
same time. In this case, the internal state of the 
displacement register at time t is X(t) = (xt, xt+1, 
…, xt+n-1),  and the resulting sequence is yt = f (xt, 
xt+1, …, xt+n-1) = f (X(t)). 
In this case, the vector X(t+1) = (xt+1, xt+2, …, xt+n) 
corresponding to the internal state of the 
register at the next instant of time is related to 
the vector X(t) by the following relation: X(t+1) 
= (xt+1, xt+2, …, xt+n) = А* X(t).  

Where the matrix A (n x n) looks like this: 

       (7) 
Then X(t) = А* X(0), where X(0) is the initial 
state of the shift register.  
 Therefore, g(x1,...,xn)  is a construction of 
a function that is not related to correlation, and 
the initial state of the register can be chosen so 
that a filter generator with the same offset sizes 
and filter function g(x1,...,xn) creates the same 
sequence as the original generator. To do this, 
we need to find a matrix D of size (n x n), firstly, 
this matrix must be connected with the matrix 
А, and secondly, the function f (D-1X),  X = 
(x1,...,xn) is not must be correlation-immune. As 
such a matrix, we can choose a polynomial 
matrix from the matrix: 

D = d0E + d1A + d2A2 + … + dkAk.         (8) 
In this case, we consider a filter 

generator with the same shift register as before, 
but with the filter function g(x1,...,xn) = f (D-1X) 
and the initial state X’ = D*X(0). If we define the 
internal state vector of the generator generated 
by X’(t) at time t, then X’(t) = D*X(t). Since both 
generators use the same feedback function and 
the matrices A and D are interconnected, we can 
obtain the following equation: X’(t) = At 
*X’(0)=At*D*X(0)=D*At*X(0)= D*X(t). The 
output sequence of the new generator at time t 
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is: zt = g(X’(t)) = f (D-1 X’(t)) = f (D-1DX(t)) = f 
(X(t)) = yt .  
 As we can see, both generators work the 
same way, so cryptanalysis of the second 
generator (with the function of non-immune 
correlation filtering) leads to cryptanalysis of 
the primary cryptosystem. 

 
2.3 Correlation cryptanalysis method for 
algorithm LILI -128  

The LILI-128 algorithm is a continuous 
synchronous cipher based on classic controlled 
shift registers[5,12]. The generator can be 
divided into two subsystems based on the 
functions they perform: the clock control 
subsystem and data generation subsystem. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Overview of LILI-128 keystream 
generators 

 
The length of the control register is Lc = 

39 bits, fc - the function is as follows: fс (x12, x20) 
= 2(x12) + x20 + 1 
The feedback polynomial of the LFSRc is chosen 
to be the primitive polynomial:  h(x) = х39 + x35 
+ x33 + x31 + x17 + x15 + x14 + x2 + 1. 

The length of the LFSRd register is Ld= 89 
bits, The feedback polynomial of LFSRd is given 
as follows::  h(x) = x89 + x83 + x80 + x55 + x53 + x42 
+ x39 + x + 1. 

The filtering function of the LILI-128 
algorithm is kept secret. The input to the filter 

function includes values in 10 cells (0, 1, 3, 7, 12, 
20, 30, 44, 65, 80) of the LFSRd register. 

The LILI-128 algorithm participated in 
the NESSIE European competition, in which it 
was found that the complexity of its evaluation 
by the method of correlation cryptanalysis is 
271. To carry out the method of correlation 
cryptanalysis discussed above and to obtain 
certain results, we work without looking at the 
subsystem for controlling the movement of the 
circuit. 

Since the filter function of the LILI-128 
algorithm is hidden, we must choose the filter 
function ourselves. The degree of nonlinearity 
of this filter function must be non-zero. The 
reason is that if the degree of non-linearity of 
the function is zero, its initial state can be 
determined, since the number of registers is 
equal to one. For this reason, the degree of 
nonlinearity as a filtering function is different 
from zero, and it is recommended to use a 
correlated immunistic function. One of these 
functions is the following function: 

f(x) = x9 ⊕ x24 ⊕ x45 * x59 * x49 * x77 * x82 * x86 * 
x88 ⊕ x89 

Therefore, in this case, the method of 
correlation cryptanalysis for the filter generator 
can be applied in the sequence of steps 
described in Example 1. 

 
RESULTS: 

Summarizing the above results, in general, 
we can propose a model for applying the 
method of correlation cryptanalysis for filtering 
stream encryption algorithms. 

In general, the method of correlation 
cryptanalysis for filtering stream encryption 
algorithms is based on the following sequence of 
steps: 

Step 1. The combination function used in 
the continuous encryption algorithm is the 
degree of nonlinearity. If the nonlinearity level 
is zero, the function used is considered 
intolerable. Otherwise the second step is taken; 

Clock control Data Generation 

LFSRс 

fс 

LFSRd 

fd z(
t) 

c(
t) 
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Step 2. The correlation immunity levels 
of the combining function used in the 
continuous encryption algorithm are. If the 
correlation immunity level is zero, the function 
used is considered intolerable. Otherwise 
proceed to the third step; 

 
Step 3. All available statanalog functions 

of the combinatorial function are searched. 
Statanalog is selected from the features that are 
linear; 

 
Step 4. Using the statanalog function as a 

filtering function, a system of linear equations is 
constructed using the known gammas and 
feedback polynomials; 

 
Step 5. By solving a system of structured 

linear equations, the initial state of the register 
is determined. 

 
CONCLUSION: 

In general, several factors influence the 
application of the method of correlation 
cryptanalysis to continuous encryption 
algorithms with a filtering generator. 

The use of the correlation immunization 
function as a filter function in filter generators 
cannot completely exclude the implementation 
of the correlation cryptanalysis method. 

The use of the immunization function with 
non-zero correlation in filtering generators 
increases the generator's resistance to the 
method of correlation cryptanalysis. 
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