
Proceedings of Second Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations
Organized by Shri Chhatrapati Shivaji Maharaj College of Engineering, Ahmednagar

In Association with Novateur Publications JournalNX-ISSN No: 2581-4230
February, 22nd and 23rd, 2019

182 | P a g e

Flash Translation layer used for mapping schemes like BAST

and FAST

Gayke Pratibha S.

Assistant Professor ,

Department of Information Technology,

Dr.Vithalrao Vikhe Patil College of Engineering, Ahmednagar (MS), India

Abstract : Flash is a type of electronically erasable

programmable read- only memory (EEPROM).

NAND Flash Memory is used in handheld electronic

devices like mobile, cameras, iPods, music

players, is also used as an alternative storage

medium for Hard Disk Drives (HDD) in PCs and

Laptops. Flash memory is important as nonvolatile

storage for mobile consumer electronics due to its

low power consumption and shock resistance. An

intermediate software layer called Flash Translation

Layer (FTL) is used to overcome these obstacles.

Many efforts for optimizing the working of

address mapping schemes have been done by

different research workers. Though various schemes

are designed and proposed but there is no literature

available providing mathematical computations

comparing the performance of the various mapping

schemes in the form of time complexity. In this paper

we have tried to find out the comparative cost of

block merge operation required during garbage

collection for some representative mapping schemes

like BAST and FAST .

Keywords: Flash Translation layer, Mapping,

BAST and FAST

1. Introduction:

 Flash memory which is an electronic non

volatile memory can be electrically erased and

reprogrammed. It was developed from EEPROM

(electrically erasable programmable read-only

memory). While a flash device can read any of its

pages, it may only write to one that is in a special

state called erased. This is called as ‘erase before

update’ characteristics of Flash. Due to which flash do

not support overwrite i.e. in-place update operation,

instead it supports out of-place-update. Flash

Translation Layer maintains a mapping table of

virtual address to physical address.

 1.1 Characteristics of NAND flash memory

1) The previous data should be erased before a

new data can be written in the same place. This is

usually called erase- before-write characteristic.

2) Normal read/write operations are performed

on a per- page basis, while erase operations on a per-

block basis. The erase block size is larger than the

page size by 64~128 times. In MLC (Multi-Level

Cell) NAND flash memory, the typical page size is

4KB and each block consists of 128 pages.

3) Flash memory has limited lifetime; MLC

NAND flash memory wears out after 5K to 10K

write/erase cycles. There are three basic operations

in NAND flash memory: read, write (or program),

and erase. The read operation fetches data from a

target page, while the write operation writes data

to a page. The erase operation resets all values of a

target block to 1. NAND flash memory does not

support in-place update.

FTLs can be categorized into two classes

according to their mapping granularities: Sector-

mapped FTLs and block-mapped FTLs. A Sector-

mapped FTL literally maps a logical address into a

physical address in a page unit. It is highly flexible as

a logical page can be written to any physical

page in NAND flash memory. On the other hand,

the mapping unit of a block-mapped FTL is a block.

And later on a hybrid mapping scheme proposed by

D. Park came into existence.

A NAND flash memory chip is composed

of a fixed number of blocks, where each block

typically has 32 pages. Each page in turn consists of

512 bytes of the main data area and 16 bytes of the

spare area. The page is the basic unit of read and

write operations in NAND flash memory.

Proceedings of Second Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations
Organized by Shri Chhatrapati Shivaji Maharaj College of Engineering, Ahmednagar

In Association with Novateur Publications JournalNX-ISSN No: 2581-4230
February, 22nd and 23rd, 2019

183 | P a g e

1.2 REVIEW OF PREVIOUS FTL SCHEMES

 A. Page Level Mapping:

In page mapping scheme the smallest logical unit that

FTL uses for address translation is a page. A page is

made up of certain number of smallest units called

as sector. This is most efficient scheme in that

a logical page can be mapped into any physical

page in flash memory. This mapping information is

kept in the form of tables called as mapping tables.

B. Block- mapping FTL

The pure block-mapping FTL is another classic

FTL scheme Block-mapping table is used to store and

manage the mapping information between LBN and

Physical Block Number (PBN). If there are m pages in

a block, the size of the block- mapping table is m

times smaller than its page-mapping counterpart. In a

block-mapping FTL, one LPN must be mapped to a

fixed page offset in any physical block (i.e., direct

mapping). If this page offset has been written before,

the LPN cannot be written to any other page in this

block even if there are free pages in the same physical

block. In this case, all existing valid data in the block

as well as the data to be written must be copied to a

new clean block, and the old block is marked for

erase, incurring one erase and a number of read/write

operations. Compared with the page-mapping FTL the

block-mapping FTL requires extra operations to

serve a request, adversely affecting the

performance. Since both the block-mapping and page-

mapping FTLs have their aforementioned

disadvantages, they are rarely used in SSD commercial

products in their pure forms.

C. Hybrid Level Mapping

A family of the hybrid mapping schemes is

introduced to address the shortcomings of the Sector-

mapping and block- mapping FTLs. In a typical

hybrid FTL, physical blocks are logically

partitioned into two groups: data blocks and log

blocks. When a write request arrives, the hybrid FTL

first writes the new data in a log block and invalidates

the data in the corresponding target data block.

Block-mapping information for data blocks and

page- mapping information for log blocks are kept in

a small RAM for performance purposes. When all the

log blocks are full, their data are flushed into the data

blocks immediately and they are then erased to

generate new free log blocks. More specifically, the

valid data in data blocks and the valid data in the

corresponding log block must be merged and written

to a new clean data block. This process is called a

merge operation. Further, merge operations can be

classified into three types depending on their

overhead. Full merge occurs, when the log block is

selected as a victim block and not written

sequentially from the first page to the last page, and

all the valid data in it and in its corresponding data

block are copied to a new clean block.

This process requires m read operations, m write

operations and two erase operations, where m is the

number of pages in a block. When the log block is

written sequentially from the first page to the last

page of a logical block, this log block can replace the

corresponding data block, a merge operation called

switch merge. This type of merge requires only one

erase operation. Partial merge takes place when the

log block is written sequentially from the first page to

a middle page in a block, and the last part of data

will be copied from the corresponding data block.

Partial merge requires several read and write

operations and one erase operation. A number of

variations of the hybrid FTL schemes have been

proposed recently, including BAST, FAST, LAST,

Superblock Reconfigurable FTL. More recently,

Demand-based FTL (DFTL) was proposed to address

the RAM- capacity problem of the page-mapping

FTL by storing only the “hot” mapping information

in RAM based on temporal locality of workloads.

DFTL is shown to significantly outperform

hybrid FTLs. A hybrid technique, as its name

suggests, first uses a block mapping technique to

get the corresponding physical block , and then,

uses a sector mapping technique to find an available

empty sector within the physical block.

1.3 COMPARATIVE SCHEME

A. Block Associative Sector Translation (BAST)

exclusively associates a log block with a data block.

In presence of small random writes, this scheme

suffers from log block thrashing that results in

increased full merge cost due to inefficiently utilized

log blocks.

Proceedings of Second Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations
Organized by Shri Chhatrapati Shivaji Maharaj College of Engineering, Ahmednagar

In Association with Novateur Publications JournalNX-ISSN No: 2581-4230
February, 22nd and 23rd, 2019

184 | P a g e

Table 1. Measures of BAST scheme

Garbage collection cost
(worst and best case) :
considering number of
random requests = K*
(number of log Blocks)

((3T/100)*K*N) Read +
((3T/100) * K*N) Write
+(2*3T/100) Erase
T: total blocks in flash
N: number of ages/block
Log block: 3% of T

RAM requirement Less, Proportional to

number of log blocks

 Search time (worst case) Time to search the page

map table of a single

log blocks.

Usefulness In case of sequential read

write and update pattern

B. Super Block FTL scheme utilizes existence of

block level spatial locality in workloads by combining

consecutive logical blocks into a super block. It

maintains page- level mappings within the

superblock to exploit temporal locality in the request

streams by separating hot and cold data within the

superblock. However, the three-level address

translation mechanism employed by this scheme

causes multiple OOB area reads and writes for

servicing the requests. More importantly, it utilizes a

fixed superblock size which needs to be explicitly

tuned to adapt to changing workload requirements.

C. Fully Associative Sector Translation (FAST)

allows log blocks to be shared by all data blocks.

This improves the utilization of log blocks as

compared to BAST. FAST keeps a single sequential

log block dedicated for sequential updates while other

log blocks are used for performing random writes.

Thus, it cannot accommodate multiple sequential

streams and does not provide any special mechanism

to handle temporal locality in random streams.

Table 2. Measures of FAST mapping scheme

Garbage collection cost (worst
and best case) :
considering number of random
requests = K* (number of log
Blocks)

((3T/100)*K*N) Read +
((3T/100) * K*N)
Write +(2*3T/100)
Erase
T: total blocks in flash
N: number of
ages/block
Log block: 3% of T

RAM requirement Less, Proportional to
number of random log
blocks

 Search time (worst case) Time to search the page

map table of all

log blocks.

Usefulness

D. Locality-Aware Sector Translation (LAST)

Scheme tries to alleviate the shortcomings of
FAST by

providing multiple sequential log blocks to exploit

spatial locality in workloads. It further separates

random log blocks into hot and cold regions to

reduce full merge cost. In order to provide this

dynamic separation, LAST depends on an external

locality detection mechanism. However, Lee et al.

themselves realize that the proposed locality detector

cannot efficiently identify sequential writes when the

small-sized write has sequential locality. Moreover,

maintaining sequential log blocks using a block-

based mapping table requires the sequential

streams to be aligned with the starting page offset

of the log block in order to perform switch-merge.

Dynamically changing request streams may impose

severe restrictions on the utility of this scheme to

efficiently adapt to the workload patterns.

1.4 DFTL Architecture

DFTL makes use of the presence of temporal

locality in workloads to judiciously utilize the

small on-flash SRAM. Instead of the traditional

approach of storing all the address translation

entries in the SRAM, it dynamically loads and

unloads the page-level mappings depending on the

work- load access patterns. Furthermore, it maintains

the complete image of the page-based mapping table

on the flash device itself. There are two options for

storing the image: (i) The OOB area or (ii) the data

area of the physical pages. We choose to store the

mappings in the data area instead of OOB area

because it enables us to group a larger number of

mappings into a single page as compared to

storing in the OOB area. For example, if 4 Bytes are

needed to represent the physical page address in

flash, then we can group 512 logically consecutive

mappings in the data area of a single page whereas

only 16 such mappings would fit an OOB area.

Moreover, the additional space overhead incurred is

negligible as compared to the total flash size. A 1GB

flash device re- quires only about 2MB

(approximately 0.2% of 1GB) space for storing all

the mappings.

Proceedings of Second Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations
Organized by Shri Chhatrapati Shivaji Maharaj College of Engineering, Ahmednagar

In Association with Novateur Publications JournalNX-ISSN No: 2581-4230
February, 22nd and 23rd, 2019

185 | P a g e

 Figure 5 DFTL Architecture

1.5 Comparison of Existing State-of-the-art FTLs

with DFTL

A. Full Merge - Existing hybrid FTL schemes

try to reduce the number of full merge operations to

improve their performance. DFTL, on the other hand,

completely does away with full merges. This is made

possible by page- level mappings which enable

relocation of any logical page to any physical page

on flash while other hybrid FTLs have to merge

page-mapped log blocks with block- mapped data

blocks.

 B. Partial Merge - DFTL utilizes page-level temporal

locality to store pages which are accessed together

within same physical blocks. This implicitly separates

hot and cold blocks as compared to LAST and

Superblock schemes which require special external

mechanisms to achieve the segregation. Thus, DFTL

adapts more efficiently to changing workload

environment as compared with existing hybrid FTL

schemes.

C. Random Write Performance - As is clearly

evident, it is not necessarily the random writes

which cause poor flash device performance but the

intrinsic shortcomings in the design of hybrid FTLs

which cause costly merges (full) on log blocks during

garbage collection. Since DFTL does not require these

expensive full-merges, it is able to improve random

write performance.

 D. Block Utilization - In hybrid FTLs, only log blocks

are available for servicing update requests. This can

lead to low block utilization for workloads whose

working-set size is smaller than the flash size. Many

data blocks will remain un-utilized (hybrid FTLs have

block-based map- pings for data blocks) and

unnecessary garbage collection will be performed.

DFTL solves this problem since up- dates can be

performed on any of the DATA blocks.

Table 3. Comparative analysis of various FTL

schemes

FTL
Scheme

Merge
cost
of

block
during

GC

Lookup
Perform

ance

RAM
Req.

Mapping
granularity

Pure
Page
level

N/A N
lookup c

Much
more

Page

Pure
block
level

Much
More

N
lookup c

Very
less

Block

BAST More Less less Page for log
Blocks

FAST Less
than
BAST

Much
more

Less Page for log
Blocks
Block for
data blocks

LAST Less
than
FAST

Much
more

Less Page &
blocks for
log blocks.
Block for
data blocks

Demand
Paged

N/A Lesser Lesser Page

1.6 Conclusion:

 From the response time got from the various workload

it is observed that the proposed innovative

algorithm outperforms the FAST scheme. FAST is

taken as a representative scheme for comparison as it

is has been considered an optimal one among the

various FTL schemes that are available. We proposed a

complete paradigm shift in the design of the FTL with

our Demand-based Flash Translation Layer (DFTL)

that selectively caches page- level address

mappings. Our experimental evaluation using Disk

Sim with realistic enterprise-scale workloads

endorsed DFTL’s efficacy for enterprise systems by

demonstrating that DFTL offered (i) Improved

performance, (ii) reduced garbage collection overhead

(iii) Improved overload behavior and (iv) Most

importantly unlike existing hybrid FTLs is free from

any tunable parameters.

REFERENCES

1. Liu D., Wang Y., Qin Z., Shao Z., Guan

Y.: A Space Reuse Strategy for Flash

Translation Layers in SLC NAND Flash

Memory Storage Systems, IEEE

Proceedings of Second Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations
Organized by Shri Chhatrapati Shivaji Maharaj College of Engineering, Ahmednagar

In Association with Novateur Publications JournalNX-ISSN No: 2581-4230
February, 22nd and 23rd, 2019

186 | P a g e

Transactions on Very Large scale Integration

(VLSI) Systems, pages 1-14, May – 2011, ISSN:

1063- 8210 Volume: PP Issue:99

2. Shin I.: Light weight sector mapping scheme for

NAND-based block devices, IEEE Transactions

on Consumer Electronics, pages: 651 – 656, May

2010, ISSN: 0098-3063 Volume: 56 Issue:2

3. “Flash Sim: A Simulator for NAND Flash-Based

Solid-State Drives” in Advances in

System Simulation, 2009. SIMUL '09. First

International Conference on pages 125-131

ISBN: 978-1-4244- 4863-0

4. Aayush Gupta Youngjae Kim Bhuvan
Urngaonkar “DFTL: A Flash Translation Layer
Employing Demand-based Selective Caching
of Page- level Address Mappings” Computer
Systems Laboratory, department of Computer
Science & Engineering. The Pennsylvania State
University, Univesity Park, PA 16802, Technical
Report CSE-08-012 August 2008.

5. Dongchul Park, Biplob Debnath, and David

Du “CFTL: A Convertible Flash Translation

Layer with Consideration of Data Access

Patterns”, Technical Report Department of

Computer Science and Engineering

University of Minnesota September 14, 2009.

6. S. Lee, D. Shin, Y. Kim, and J. Kim.
LAST: Locality- Aware Sector Translation for
NAND Flash Memory- Based Storage
Systems, in Proceedings of the International
Workshop on Storage and I/O
Virtualization, Performance, Energy, Evaluation
and Dependability (SPEED2008), February 2008.

7. Chung, D. Park, S . Park, D. Lee, S. Lee, and H.
Song. System Software for Flash Memory: A
Survey. In Proceedings of the International
Conference on Embedded and Ubiquitous
Computing, pages 394–404, August 2006.

8. J. Kang, H. Jo, J. Kim, and J. Lee. A

Superblock-based Flash Translation Layer for

NAND Flash Memory. In Proceedings of the
International Conference on Embedded Software

(EM-SOFT) , pages 161–170, October 2006. ISBN

1-59593-542-8.

9. S. Lee, D. Park, T. Chung, D. Lee, S . Park,

and H. Song. A Log Buffer based Flash

Translation Layer Using Fully Associative
Sector Translation. IEEE Transactions on

Embedded Computing Systems, 6(3):18, 2007.

ISSN 1539–9087.

10. T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-

W. Lee, and H.-J. Song, “A survey of Flash

Translation Layer,” J. Syst. Archit., vol. 55, no. 5-
6, 2009.

11. Shinde /Gayke Pratibha, Mrs. Suvarna

“Efficient Flash Translation layer for Flash

Memory” International Journal of Scientific and

Research Publications, Volume 3, Issue 4, April 2013

ISSN 2250-3153

