

Proceedings of International Conference on Advances in Computer Technology and Management (ICACTM)
In Association with Novateur Publications IJRPET-ISSN No: 2454-7875

ISBN No. 978-81-921768-9- 5
February, 23rd and 24th, 2018

168 | P a g e

SIMPLIFIED SOLUTION TO DESIGN DFA, THAT ACCEPT STRINGS OVER
{A,B} HAVING AT LEAST X NUMBER OF ‘A’ OR Y NUMBER OF ‘B’

COMMON BETWEEN TWO CONDITION.

PROF.NILIMA SHINGATE MR.PRADIP SHINGATE

Department of Computer Science Senior Software Developer
Head of Department WHIZ Technology, Pune

Christ College, Pune pradip.shingate@gmail.com
Nilima.gaikwad86@gmail.com 9766934468

 9766794701

ABSTRACT
Today, it is very difficult to understand the de- signing

concepts of deterministic machine. One question is arise?
How it is possible to understand the concepts of
deterministic machine in a very easy manner. In this
paper, we have design a DFA and develop an method with
suit- able examples that how DFA machine works in a
simply manner. For it, we consider that a DFA machine
takes the input string {a, b} having at least x number of
a or y number of b common between TWO condition.
The objective of this paper to under- stand the
concepts of deterministic machine in easy manner.

KEYWORD - DFA, Transition Table, Transition Table
(TT)

I. INTRODUCTION
DFAs are a fundamental topic in computer science
education. Besides being part of the standardized
computer science curriculum, the concept of DFA is rich in
structure and potential applications. It is useful in diverse
settings such as control theory, text editors, lexical
analyzers, and models of software interfaces.
A deterministic Finite automaton (also known as
determin- istic finite state machines) is the system to
accomplish many tasks in Computer Science. To increase
the computational power of existing computers, it is
based not only to increase the frequency of CPU but also
we use other modern technologies. The finite automata
implementations are used to consider these types of
technologies. For example, multiple CPU core is one of the
latest technologies which is used now. We can represent
DFA by digraphs which is also called state transition
diagram. In this digraph the vertices are denoted by single
circles of a transition diagram which represent the states
of the DFA and the arcs are labeled with an input
symbol correspond to the transitions. We represent
accepting states by double circles.
Efficient learning of DFA is a challenging research problem
in grammatical inference. It is known that both exact and
approximate (in the PAC sense) identifiability of DFA is
hard.

II. MYTHOLOGY
Automata theory is a branch of theoretical computer sci-
ence, DFA is known as Deterministic Finite Automata. A
finite state machine accepts or rejects finite strings of
sym- bols and gives a unique computation for each input
string[15]. McCulloch and Pitts were among the first

re-searchers to introduce a concept similar to finite
automaton in 1943.[5]
A DFA is defined as an abstract mathematical concept,

but due to the deterministic nature of a DFA, it is
implementa- ble in hardware and software for solving
various specific problems[15]. For example, a DFA can
model software that decides whether or not online user-
input such as email addresses are valid.

Finite Automata (M) is defined as a set of five tuples
(Q, Σ, δ, q , F)
0
Where

Q= a finite, non-empty set of states
Σ= a finite, non-empty set of inputs δ
is the state-transition function: δ:Q X
Σ → Q
q is the initial state

0

F is the set of final states, a subset of Q.

δ can be represents using either of three approach
given below

•Transition Graph.

• Transition Function.

• Transition Table.

We had used the transition table as the approach to
represent δ.

III. ALGORITHM
By applying this Algorithm we can design Deterministic
Finite Automata that accept strings over input symbol a, b
having atmost x number of a & y number of b
Algorithm to draw TG
Deterministic Finite Automata M= (Q, Σ, δ, q0, F)
Where
Danish Ather, et al., JNIC, Vol. 1, No. 2, pp. 30-33, 2013 31
Q= {q11,q12,q13,….q21,q22,……qij}
Σ= {a,b}
δ:QXΣ→Q{Represented by Transition Graph }
Q0 = qij when i=j and i=j=1. i.e. q11
F={q11,q12,q13,….q21,q22,……qij}

mailto:Nilima.gaikwad86@gmail.com

Proceedings of International Conference on Advances in Computer Technology and Management (ICACTM)
In Association with Novateur Publications IJRPET-ISSN No: 2454-7875

ISBN No. 978-81-921768-9- 5
February, 23rd and 24th, 2018

169 | P a g e

Let Q be the set of states in Deterministic Finite Automata
such that Q={q11,q12,q13,….q21,q22,……qij}
Where i = 1 to x+1
j= 1 to y+1
Input Symbol Σ={a,b}
q11 is the initial state.
Design a directed transition graph having (x+1)*(y+1)
states and mark all states as final states.
Label each node as q11,q12,q13,….q21,q22,……qij
Where i = 1 to x+1; j= 1 to y+1; x= na & y=nb
FOR i= 1 to x
do
FOR j= 1 to y
do
if i=j=1 then qij ε Q0 (Initial State)
else there exist a edge E such that δ(qij,a)→qij+1
done inner loop
done outer loop
FOR i= 1 to x
do
FOR j= 1 to y
do
if i=j=1 then qij ε Q0 (Initial State)
else there exist a edge E such that δ(qji,b)→qj+1,i
if i=x+1 and j=y+1 then there exist δ(qij, a)→qij and
δ(qij, a)→qij.
done inner loop
done outer loop
q11 being the initial state
DFA “M” will strings over input symbol a, b having
atmost x number of a & y number of b if all the input is
consumed and halting state is the final state.

IV.IMPLEMENTATION
Example 1:
Design a DFA,over a language {a,b,c} which start with
‘ab’ and end with ‘bc’.

Let the resultant DFA is M = (Q, Σ, δ, q0, F)
Where

Q = {q0, q1, q2, q3, q4}
Σ = {a, b, c}
δ = Q X Σ → Q
q0 = { q0}
F = {q3}

Figure 1: DFA,over a language {a,b,c} which start with ‘ab’

and end with ‘bc’

TRANSITION TABLE:

Example 2:

Design a DFA,over a language {p,q,r} which start with
‘pq’ having sub string ‘qpr’ and end with ‘rq’.

Let the resultant DFA is M = (Q, Σ, δ, q0, F)
Where

Q = {q0, q1, q2, q3, q4, q5, q6, q7}
Σ = {p, q, r}
δ = Q X Σ → Q
q0 = { q0}
F = {q5}

Figure 2: DFA,over a language {p,q,r} which start with ‘pq’

having sub string ‘qpr’ and end with ‘rq’.

TRANSITION TABLE

 V.RESULT ANALYSIS AND DISCUSSION
 In the FIRST example - DFA,over a language {a,b,c}
which start with ‘ab’ and end with ‘bc’.

Input symbol ‘b’ is common so, smallest accepted string
over {a,b,c} is abc .

M a b c

q0 q1 qE qE

q1 qE q2 qE

q2 q4 q2 q3

q3 q4 q2 q4

q4 q4 q2 q4

qE qE qE qE

M a b c

q0 q1 qE qE

q1 qE q2 qE

q2 q3 q2 q6

q3 q6 q2 q4

q4 q7 q5 q4

q5 q7 q7 q4

q6 q6 q2 q6

q7 q7 q7 q4

qE qE qE qE

Proceedings of International Conference on Advances in Computer Technology and Management (ICACTM)
In Association with Novateur Publications IJRPET-ISSN No: 2454-7875

ISBN No. 978-81-921768-9- 5
February, 23rd and 24th, 2018

170 | P a g e

RULE or CLUE:

Total number of states in DFA = total number of condition
input symbol + 1(our side)

So, In this example we should have 5 states.

But when we draw the basic DFA, it contain only 4
states,
Because ‘b’ is common.

After solving we come to know that 1 state is
miscellaneous.
So, we have to keep in mind that whenever we are solving
such problem, one extra or miscellaneous state will
come.

In the SCECOND example - DFA,over a language {p,q,r}
which start with ‘pq’ having sub string ‘qpr’ and end
with ‘rq’.

Input symbol ‘q’ and ‘r’ are common so, smallest accepted
string over {p,q,r} is pqprq.

According to above RULE or CLUE:

we should have 8 states.
But when we draw the basic DFA, it has only 6 states,
Because ‘q’ and ‘r’ are common.

After solving we come to know that 2 state is
miscellaneous.
So, we have to keep in mind that whenever we are solving
such problem, two extra or miscellaneous state will
come.

 VI. CONCLUSION
This research will definitely enhance the teaching learning
environment of theory of computation and helps students
to design DFA.

 VII.REFERENCES
1) Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D.

(2001). Introduction to Automata Theory, Languages,
andComputation (2 ed.). Addison Wesley. ISBN 0-201-
44124-1.Retrieved 19 November 2012.

2) Lawson, Mark V. (2004). Finite automata. Chapman and
Hall/CRC. ISBN 1-58488-255-7. Zbl 1086.68074.

3) McCulloch, W. S.; Pitts, E. (1943). "A logical calculus of
the ideas imminent in nervous activity". Bulletin of
Mathematical Biophysics: 541–544.

4) Rabin, M. O.; Scott, D. (1959). "Finite automata and their
decision problems.". IBM J. Res. Develop.: 114–125.

5) Sakarovitch, Jacques (2009). Elements of automata
theory. Translated from the French by Reuben Thomas.
Cambridge: Cambridge University Press. ISBN 978-0-
521-84425-3. Zbl 1188.68177.

6) Sipser, Michael (1997). Introduction to the Theory of
Computation. Boston: PWS. ISBN 0-534-94728-X..
Section 1.1: Finite Automata, pp. 31–47. Subsection
"Decidable Problems Concerning Regular Languages" of
section 4.1: Decidable Languages, pp. 152–155.4.4 DFA
can accept only regular language

7) C. Allauzen and M. Mohri, Finitely subsequential
transducers, International J. Foundations Comp. Sci. 14
(2003), 983-994

8) M.-P. Béal and O. Carton, Determinization of
transducers over finite and infinite words, Theoret.
Comput. Sci. 289 (2002), 225-251

9) Bruggemann-Klein, Regular expressions into finite
automata, Lecture Notes in Computer Science 583
(1992), 87-98

10) J. Carroll and D. Long, Theory of Finite Automata,
Prentice- Hall, Englewood Cliffs, NJ, 1989.

11) M. V. Lawson, Finite Automata, CRC Press, Boca Raton,
FL,2003.

12) D. Perrin, Finite automata, in Handbook of Theoretical
Computer Science, Volume B (editor J. Van Leeuwen),
Elsevier, Amsterdam, 1990, 1-57.

13) D. Perrin and J. E. Pin, Infinite Words, Elsevier,
Amsterdam, 2004.

14) Ch. Reutenauer, Subsequential functions:
characterizations, minimization, examples, Lecture
Notes in Computer Science 464 (1990), 62-79.

15) J. Sakarovitch, Kleene’s theorem revisited, Lecture
Notes in Computer Science 281(1987), 39-50.

16) E. Roche and Y. Schabes (editors), Finite-State Language
Processing, The MIT Press, 1997.

	II. MYTHOLOGY

