
Proceedings of 1st Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations
Organized by Shri. Chhatrapati Shivaji Maharaj College of Engineering, Nepti, Ahmednagar

In Association with JournalNX - A Multidisciplinary Peer Reviewed Journal, ISSN No: 2581-4230
21st - 22nd February, 2018

105 | P a g e

RUNTIME SERVICE DISCOVERY

Miss.Rohini Jadhav,

Prof. Dr. S.D.Joshi
BVCOE Computer Department

Email:Rohini.jadhav@outlook.com,sdj@live.in

Abstract - During the execution of service based

application there is an important issue for replacing the
service in them which fails to satisfy the current
requirement or is no longer present. Services based can
be identified on various service parameters such as
quality,behavioural,contextual andstructural leads to
effective runtime discovery of service. So, we are
introducing a framework that support runtime services
discovery.The framework supports two modes of
execution of query for service discovery namely push
and pull mode. In pull mode (reactive way), queries are
executed oncerequirement for searching a replacement
service rises (for example: unavailability or
malfunctioning of service, emergence of new service,
changes in structure functionality etc.).In push mode
(proactive way), execution of query is carried out
parallely to the servicebased system execution. Hence,
if there is a requirement to substitute or changea
service in service-based application, push(proactive)
mode of execution of query makes it possible to escape
interruptions in the working of application. Both types
(i.e., pull and push) of queries are indicated in a XML
based query language known as SerDQueL. SerDQueL is
the language that allows the representation of
behavioral (functionality), structural(interface),
contextual and quality conditions of services need to be
found. So in this paper, we are going to discuss the
runtime service discovery framework.

Keywords—Web Services, XML, Service Discovery.

I. INTRODUCTION

Services are nothing but entities that are owned by a
third party in a service based application. Such services
are helpful in creating the dynamic business processes.
Due to various changing requirements in market, it is
important to identify the services that will directly
fulfill the need of user by providing the appropriate
quality and functional features of service based
application .The process of identifying such services is
called as Service DiscoverySeveral researches and
approaches has been created to support service

discovery, categorized as dynamic[1], [2], [3], [4] and
static [5], [6], [7], [8] approaches. The services which
are identified during the application development and
prior to execution comes under static approach while
the services that are identified throughout the
execution of the application comes under dynamic
approach. There are various scenarios where we need
to substitute the service throughout the execution of
application.

Following are the scenarios due to which we need to
replace the services:
1)Variations in the interface, behavioral, quality,
service context in the application due to the service
which no longer fulfill its task.
2) Due to service unavailability , service
malfunctioning.
3) The occurrence of new services which satisfy the
task in much improved way than the existing service.
4) Changes in application context due to services which
is used no longer fulfill its task.

The above scenarios give rise to a question, that how to
support the application when the service which is being
used is not working properly or stop functioning as
desired, as well as changing the application and their
services continuously at runtime .To address such
questions we require a flexible and dynamic service
identification at the runtime of service based
application.
Currently most of the approaches uses pull mode of
query execution for dynamic service discovery. This
approach of query execution is often not efficientas the
discovery process starts only if the requirement for a
new service rises (as inabove case 1) and it may also
consume more time to complete, which will affect the
application performance and its capability to prepare
appropriate “real-time” answer to the user and it
should also be taken into consideration that pull mode
discovery approach cannot recognize better or
appropriate services (as in case 3 above). Similarly, for
other cases 2 & 4 above, pull mode discovery would
required to wait unless the changes that made used
services become inadequaterises at runtime, similar to

Proceedings of 1st Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations
Organized by Shri. Chhatrapati Shivaji Maharaj College of Engineering, Nepti, Ahmednagar

In Association with JournalNX - A Multidisciplinary Peer Reviewed Journal, ISSN No: 2581-4230
21st - 22nd February, 2018

106 | P a g e

case 1. On the other hand, the pull mode of query
execution required to be improvised for polling service
registries on a regular basis and/or context data
resources to discover changes that can produce another
issues. Such polling would consume resources as even if
there is no need to do so it would required to be
executed at regular intervals (i.e., in case of emergence
of new services ,application environment, in the
absence of service context changes or context changes).
 In addition, existing methods to service discovery do
not consider various characteristics of the application
simultaneously when attempting to discover services
such as, functional (i.ebehavioral), quality, interface
(i.estructural) and contextual aspects .
To address the existing methods lacunas, we provide a
web service discovery framework that provides
runtime service discovery based on complex queries
that can articulate flexible groupingsof quality,
structural, contextual and behavioral parameters.
These complex queries are described in query language
based on XML, known as SerDQueL. The framework
considers services that have unusual descriptions with
service functional, , quality, interface and context
descriptions.
To support above cases 1 to 4 and avoid the lacunas of
traditional mechanisms for polling, our framework
permits service discovery based on both push and pull
mode of query execution . Pull mode query execution is
started inabove cases 1 . In push mode, query
execution is carried out in parallely to the application
execution using queries. These queries maintain
current sets of candidate replacement services for these
services & are related with particular services in an
application . In both pull and push modes, execution of
query is based on similar& the computation of service
specifications and distances among queries.

II. OVERVIEW

In this section, we will be presenting some situations
for runtime web service discovery and provide an in
general description of how our framework will be
helpful to deal with these scenarios.

A) Scenarios of Runtime Web Service Discovery

Considering to a mobile service based application called
On-the-go-News many scenarios or situationsrelated to
runtime service discovery can be found [10] .

On-the-go-News is the application which permits its
users to request news from their mobile phone from
different sites as well as get the response accordingly.

To do so, the application provides services letting
users to:

1. searchingnews topics and selecting the source

from where the user desired to receive the news,
2. display news from different sources about a

topic,
3. create tailored on-the-fly “magazines” or with

datafrom variousunlike news sites,
4. in a tailored magazine flip through articles from

numerous sources,
5. find and pay for the paid available data, by

applying the amount in the user’s invoice at
mnth end, and

6. check new balance of user’sinvoice after using
the application for 5.

On-the-go-News usesSService an peripheral service,

which findsvarious news sites to locate news about
particular topics, andSCustMaganother service, which
enables the combination of news and their look in an
tailored on-the-fly magazine.

After getting a request for news on a particular topic
one runtime service discovery scenario may occur, on-
the-go-News is unable to reach or contact SService due to
which thenext service is not available (Case 1). In this
case, the application will requireto find a new service to
substitute or changeSService. Once the new service is
found and bound to on-the-go-News,the user who
requested service will start getting the requested data
from varioussites.

A second situation may rise if a user who wants an
on-the-fly magazine regardingchange in weather on
her/his mobile phone &developed such a magazine
using SCustMag starts receiving response slowly from
SCustMag as the service is used by many different users at
the same time.(Case 2). In such scenerios, a substitute
service for SCustMag with suitable response time required
to be foundand bound to on-the-go-News.

A third scenario rises while a user of on-the-go-News
is traveling by train, he loses access to the service that
displays and supports flipping through news (i.e., a
service
Known asSDisFlip) since SDisFlipis not able to begain access
at his/her current location. This alter in the location of
on-the-go-News
(Case 3) needs finding for ansubstitute service that
could be used in the current location of user.
A fourth situation arises once a new service that
permits payments by debiting the
user’s account and payments by card rather
than applying charges in the user’s invoice(phone
bill) becomes accessible. In on-the go news,if flexibility in
payment is, the new service should be bound to the
application.

Proceedings of 1st Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations
Organized by Shri. Chhatrapati Shivaji Maharaj College of Engineering, Nepti, Ahmednagar

In Association with JournalNX - A Multidisciplinary Peer Reviewed Journal, ISSN No: 2581-4230
21st - 22nd February, 2018

107 | P a g e

B) Framework Support

Fig.1 Architecture of various components in runtime
service discovery framework

Runtime service discovery consists of web service user
interface, application data server, service data server,
service analyzer, request web service, match finder,
service catalog system, external service catalogs.

The web service user interface is used by the
user to query for a web service which provides access
to framework. It represent request entry point and
response exit point.

The request web service block offers various
functionalities. It instantiates the service queries to be
executed by the matchfinder based on the various
situations, receives responses from matchfinder,
collect, organize the result and send it to the web
service interface etc.

The matchfinderis responsible to analyze the
constraints of query and assessconstraints in
contradiction of service specifications in the different
service registries. The matchfinder consists of two
stages filtering and ranking.
 The service catalog system provides the use of
different service registries.Service catalog system’s
main aim is to provide an interface, which permits the

matchfinder to access services from different type
registries.
 The service data server and application data
server enable context data is to be subscribed. They
also allow to spread contextdata of the application
environment and services.
 The service analyzer provides the data about
the new service available or data about changes in
interface, quality ,functionalfeatures of existing services
of an application.

III. WEB SERVICE DISCOVERY QUERY LANGUAGE

A runtime service discovery query may
havevarious criteria, namely:1) behavioral criteria i.eit
describes the functionality of the service needed 2)
structural criteriai.eit describes the interface of the
service needed; 3) constraints i.eit specifies additional
criterias for the service to be discovered; 4) The last
criteria may refer tointerface characteristics of
servicesor quality aspects of the desired service which
is not possibleto represent by the standardized forms of
structural descriptions used in the framework.
Examples of constraints referring to quality features of
services may concern to cost or the maximum response
time to execute a certain operation in a service.

The constraints in a query can be either non-
contextual or contextual. A contextual constraint is
concerned with dynamic informationi.e which chages
during the service based application operation or the
services deployed by the application,. The constraints
are classified as soft or hard. Soft constraints do not
required to be fulfilled by all services that are
dicovered, but are used to rank candidate services.

A hard constraint must be fullfiled or satisfied by all
services that are discovered for a query and is used to
filter services that do not accomplish with them.

To specify runtime service discovery queries, we
have created a language based on XML, known
asSerDQueL. SerDQueLallows the specification of all the
contextual ,structural,quality,and behavioral
characteristics needed from the services which will be
discovered. Pervious version of SerDQueLwas
presented in [9]. The new version of thelanguage that
we represent in this article enables the behavior
specification of a service needed using behavioral
criteriainstead of a full BPEL model of service behavior
as in the original version.

A) UML Diagrams
 In this section we are providing the use case
and class diagram for the runtime service discovery.

Proceedings of 1st Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations
Organized by Shri. Chhatrapati Shivaji Maharaj College of Engineering, Nepti, Ahmednagar

In Association with JournalNX - A Multidisciplinary Peer Reviewed Journal, ISSN No: 2581-4230
21st - 22nd February, 2018

108 | P a g e

Fig. 2 Class Diagram for Runtime Service Discovery

Fig. 3 Use Case Diagram for Runtime Service Discovery

IV. CONCLUSION

In this paper, we have seen a framework for dynamic

service discovery in which candidate services are used

to reinstate the existing services of service based

application. This framework also overcome the

problem of various scenarios for example.

Malfunctioning or unavailability of services, etc. In push

and pullmode of query execution, a service is

coordinatedin contradiction of a query based on service

specifications and computation of distances between

query. The framework uses complex queries articulated

in query language based on XML namely SerDQueL.

This language allows the representation of behavioral,

structural, quality and contextual featuresof

applications and services. Now we are planning to

check the correctness of SerDQueL as well as reduce

the need of polling.

REFERENCES

[1] ,J.C. Corrales, D. Grirori and M. Bouzeghoub,
“Behavioral Matching for Service Retrieval,” Proc.
Int’l Conf. Web Services, 2006.

[2] R. Lara, U. Keller, A. Polleres, H. Lausen, and D.
Fensel, “Automatic Location of Services,” Proc.
European Semantic Web Conf., 2005.

[3] L. Li and I. Horrock, “A Software Framework for
Matchmaking Based on Semantic Web Technology,”
Proc. Int’l Conf. World Wide Web, 2003.

[4] J. Su and Z. Shen , “Web Service Discovery Based on
Behavior Signatures,” Proc. Third Int’l Conf. Service
Computing, 2005.

[5] H. Lutfiyya ,M. Katchabaw ,S. Cuddy, “Context-
Aware Service Selection Based on Dynamic and
Static Service Attributes,” Proc. IEEE Int’l Conf.
Wireless and Mobile Computing, Networking, and
Comm., 2005.

[6] Vazirgiannis N. Loutas,andC. Doulkeridis, “A
System Architecture for Context-Aware Service
Discovery,” Electronic Notes of Theoretical
Computer Science, vol. 146, no. 1, pp. 101-116,
2006

[7] H. Niu and Y. Park, “An Execution-Based Retrieval
of Object-Oriented Components,” Proc. 37th ACM
Southeast Regional Conf.,1999

[8] J. Grundy, S. Singh, ,J. Sun and J. Hosking, “An
Architecture for Developing Aspect-Oriented Web
Services,” Proc. Third European Conf. Web Services,
2005.

[9] A. Zisman, K. Mahbub, and G. Spanoudakis “A
Platform for Context-Aware Run-Time Service
Discovery,” Proc. IEEE Int’l Conf. Web Services,
2007.

[10] G. Spanoudakis, A. Zisman, James Dooley,

IgorSiveroni“Proactive and Reactive Runtime
Service

	References

