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ABSTRACT:- In this paper we prove the existence result
for initial value problems with nonlinear functional
random fractional differential equations under
Caratheodory condition.
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1. INTRODUCTION:-

The linear as well as nonlinear initial value
problem of random differential equations have been
studied in the literature by the authors since long time
refer a Dhage[4-6]. Similarly the fraction differential
equation are frequently use in many branches of
engineering and science It has been mentioned first by
Liouville in a paper from 1832. There are real world
phenomena with anomalous dynamics such as signals
transmission, network traffic and
so on. In this case the theory of fractional differential
equation is a good tool for modeling such as phenomena.
For some fundamental result in the theory of fractional
differential  equations. We  refer paper of
Lakshmikantham [9, 10, 11] and [13,14].

Let R denote the real line and Let I, = [—r1, 0]
and [ = [0, T] be two closed and bounded interval in R
for some r>0and T > 0. Let J = [, UL Let C(I,, R) denote
the space of continuous R valued function [,. We equip
the space C = C(I;,R) with a supremum norm |l.llc

defined by
lIxlle = sup [x(t)]
telp

Clearly C is a Banach Space which is also a Banach Space
with respect to this norm. For a given tel define a
continuous R-valued function.

X¢lp = R by x(0) = (t+6), 0 €l

Let (©,A) be a measurable space ie. a set 2 with a o-
algebra of subset of 2 and for given a measurable
function x: Q — C(J, R).

Consider nonlinear functional random fractional
differential equations of the form (in short RFDE)
Dex(t, w)=f(t x(w) w) aete], O<a<l

x(0, w) =x4(w) }
(1.1)
Where x is a random function; x, is random, D“x is the
Caputo fractional derivative of x with respect to the
variablet € Jand f:] X R X ) — Ris given function.

2. EXISTENCE RESULT:-

Let E denote a Banach space with the norm |[|.||
and let Q: E—E. We further assume that the Banach
space E is separable i.e. E has countable dense subset
and let Bt be the o — algebra of Borel subset of E. We say

a mapping x: Q— E is measurable if for any B € 3z one
has

x1(B) ={(w,x) QX E:x(w,x) EB}E A X fBE

Where A X Be is the direct product of the o- algebras A
and Bk those defined in Q and E respectively.

Let Q: Q X E— E be a mapping. Then Q is called
a random operator if Q (w, x) is measurable in w for all
x€E and it is expressed as Q(w) x = Q(w, x). A random
operator Q (w) on E is called continuous (resp. compact,
totally bounded and completely continuous) If Q(w, x) is
continuous (resp. compact, totally bounded and
completely continuous) in x for all w € Q.

Lemma 2.1[12]: Let Bg(0) and By (0) be the open and
closed ball centered at origin of radius R in the separable
Banach space E and let Q: QX By (0)— E be a compact
and continuous random operator. Further suppose that
there does not exists an ue E with ||u||=R such that Q (w)
u=Au for all A € Q where A > 1. Then the random
equation Q(w)x = x has a random solution, i.e. there is a
measurable function &:Q—Bg (0) such that
Q(w)é(w)=¢(w) for all we Q.

Lemma 2.2[12]: (Carathéodory) Let Q: A x E — E be a
mapping such that Q(.,x) is measurable for all xe E and
Q(w,.) is continuous for all w €Q Then the map (w, x)
—Q(w, X) is jointly measurable.

We seek random solution of (1.1) in Banach
space C (J, R) of continuous real valued function defined
on ]. We equip the space C ( ], R) with the supremum
norm||.|| defined by

[1x]] = supres|x(t)|

It is known that the Banach space C (J, R) is
separable. By L! (J, R) we denote the space of Lebesgue
measurable real-valued function defined on 7. By ||.||.!
we denote the usual norm in L! (7, R) defined by

1

[1x[lut= J; Ix(D)|dt.
We need the following définition in the sequel.
Definition 2.1: A Carathodory function f:7 x R x @ —R
is called random L!- Carathéodory if for each real
number r>0 there is a measurable and bounded function
hr: Q — L1(J,R) such that

If(tx, w)] < hr(t w)
Where |x|< r and for all w €
We consider the following set of hypothesis
Hi)  The function (t, x) = f(t x, w) is continuous for

a.e. wel.

a.etel.
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Hz)  The function w = f(t, X, w) is measurable for a. e.
w EN.

H3z)  There existy €ER s.t. xo(w) € By (0) for a. e. w €Q
where
Br(0) ={xeR:||x- x,||s€}

Hi)  There exist K>0 and x, € Q s.t||f(t, x, w)|| < —

a.e. w €. And I' is a gamma function

Our main existence result is
Theorem 2.1: Assume that the hypothesis H: - H4 hold.
Suppose that there exist a real number R>0 such that
R>r11 ||y (w) [y (R) .. (2.1)
for all w € Q where r1 = maxteo,1] r(t),r(t) is in the greens
function
Then the (1.1) has a random solution defined on J
Proof: - Set E=C (9, R) and define a mapping Q: Qx
E—E by
QU)X(D) = %o (@) + J 8alt = 9)f(s, %s(@), w)ds

..(2.2)
a.e. w €7 and for all t € ]J. ( Equation (2.2) is an Integral
representation of (1.1)) Then the solution of (1.1) is
fixed point of operator Q .

Define a closed ball By (0) in E centered at
origin with radius R where the real number R satisfies
the inequality (2.1). We show that Q satisfies all the
condition of lemma 2.1 on By (0).

First we show that Q is random operator in By
(0). Since f(t, x,(w), ®) is random Caratheodory and x(t,
® ) is measurable, the map w - f(t x(w), w) is
measurable. Similarly the product g, (t — s)f(s, x;(w), w)
of continuous and measurable function is again
measurable. Further the integral is a limit of finite sum of
measurable function . Therefore the map
0 = xo() + [ 8a(t = (5, %, (@), w)ds = Qw)x(V
is measurable.

As aresult Q is random operator on £2 x B (0) in to E.

Next we show that the random operator Q(w) is
continuous on By (0). Let x,, be a sequence of point in By
(0) converging to the point x in Bg (0). Then it is
sufficient to prove that
rllllgo Q) x,(t) =Q(w)x(t) forallte], w €N.

By the dominated convergent theorem we obtain
lim Q() X, (©)= lim [xp () + Jy Balt—
s) f(s, x, (W), w) ds]

= Xo(@) + J; 8t = (5 X (), w)ds

= Q(w)x(1)
For all t € ], w €. This shows that Q(w) is a continuous
random operator on B (0).
Now we show that Q(w) is a compact random operator
on By (0).

To finish it, we should prove that Q(w)(Bg (0)) is a
uniformly bounded equi continuous set in E for each
Ka® ¢

l"o(+1S E ’

Let w€&N be fixed then for any x: 2 — By (0) has
t
Q)% (1) = %, ()] < []ga(t = 5) |f(5,Xp(w), @) |ds

WE(. Since the map w —

Next we show that Q(w) (Bg (0)) is equicontinuous set in
E forany x € By (0), t1,t2€ ] , € > 0 we have

Q@)x(t)) = Q@)x(t)] <= fy*(t, — Dt =
(t, — Do [t — D dr

2K
< _a
T TFa+1 (t S) <€

Hence for all t1, t2€ ]
|Q(w)x(t;) — Q(w)x(t,)] — 0as t1-tz uniformly for all
x €BR (0). o
Therefore Q(w)Bg (0) is . Then we know it is compact by
Arzela - Ascoli theorem for each w€&f. Consequently
Q(w) is a completely continuous random operator on By
(0).
Finally we suppose there exist such an element u in E
with [Ju || = R satisfying Q(w)u(t) = A u(t, w) for some w
€ and A > 1. Now for this w € we have
Au(t, w) =Q(w)u(t)

1
lu(t w) | <3| Q(w)u(t) |

1 t

< 2o (@) + f 8ot — (s, x5(w), w)ds|

< 3%0(0) * 3 g 8alt = (s, x,(w), w)ds

< lXo (@) + _ka%®
A ATa+1
sp
1 ka®
Forallt € ] where p = ;Xo(ﬂ)) t o

This contradicts to inequality (2.1) this all the condition
of lemma 2.1 are satisfied.

Hence random equation Q(w) x(t) = x(t,w) has a random
solution in By (0) i.e. there exist a measurable function &
: 2 > By (0) such that Q(w)&(t)=¢(t) for all we Q and t €
J. As a result RFDE (1.1) has a random solution defined
on J. This completes the proof.
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