Proceedings of 1st Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations Organized by Shri. Chhatrapati Shivaji Maharaj College of Engineering, Nepti, Ahmednagar In Association with JournalNX - A Multidisciplinary Peer Reviewed Journal, ISSN No: 2581-4230 **21st - 22nd February, 2018**

EXISTENCE RESULT FOR INITIAL VALUE PROBLEM WITH NONLINEAR FUNCTIONAL RANDOM FRACTIONAL DIFFERENTIAL EQUATION

Dr. M. K. Bhosale¹, Mr. S.S.Parande²

1(Dept. of Mathematics,Shri. ChhatrapatiShivajiMaharaj College of Engineering Dist. Ahmednagar/Pune University, Maharashtra. India, email: mrs.megha_shinde@rediffmail.com) 2(Dept. of Mathematics,Shri. ChhatrapatiShivajiMaharaj College of Engineering Dist. Ahmednagar/Pune University, Maharashtra. India)

ABSTRACT:- In this paper we prove the existence result for initial value problems with nonlinear functional random fractional differential equations under Caratheodory condition .

KEY WORDS: **-** Random fractional differential equation, fractional integral, Caputo fractional derivative etc. 2000 MATHEMATIC SUBJECT CLASSIFICATION:- 26A33, 47H10.

1. **INTRODUCTION:-**

The linear as well as nonlinear initial value problem of random differential equations have been studied in the literature by the authors since long time refer a Dhage[4-6]. Similarly the fraction differential equation are frequently use in many branches of engineering and science It has been mentioned first by [Liouville](http://en.wikipedia.org/wiki/Liouville) in a paper from 1832. There are real world phenomena with anomalous dynamics such as signals transmission, network traffic and

so on. In this case the theory of fractional differential equation is a good tool for modeling such as phenomena. For some fundamental result in the theory of fractional differential equations. We refer paper of Lakshmikantham [9, 10, 11] and [13,14].

Let ℝ denote the real line and Let $I_0 = [-r, 0]$ and I = $[0, T]$ be two closed and bounded interval in $\mathbb R$ for some r> 0 and T > 0. Let $J = I_0$ UI. Let $C(I_0, \mathbb{R})$ denote the space of continuous $\mathbb R$ valued function I_0 . We equip the space $C = C(I_0, \mathbb{R})$ with a supremum norm $\| \cdot \|_c$ defined by

 $||x||_c = \sup |x(t)|$ $t \in I_0^-$

Clearly C is a Banach Space which is also a Banach Space with respect to this norm. For a given $t \in I$ define a continuous R-valued function.

 $x_t: I_0 \to \mathbb{R}$ by x_t $x_t(\theta) = (t + \theta)$, $\theta \epsilon I_0$ Let (Ω, A) be a measurable space i.e. a set Ω with a σ algebra of subset of Ω and for given a measurable function x: $\Omega \to C(I, \mathbb{R})$.

Consider nonlinear functional random fractional differential equations of the form (in short RFDE)

 ${}^{\mathrm{c}}\mathbf{D}^{\alpha}$ x(t , ω)= f(t, $\mathbf{x}_{\mathrm{t}}(\omega)$, ω) a.e t∈ J , 0< α <1 $x(0, \omega) = x_0(\omega)$

(1.1)

Where x is a random function; x_0 is random, $D^{\alpha}x$ is the Caputo fractional derivative of x with respect to the variable $t \in J$ and $f: J \times \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ is given function.

2. EXISTENCE RESULT:-

Let E denote a Banach space with the norm **||.||** and let Q: $E \rightarrow E$. We further assume that the Banach space E is separable i.e. E has countable dense subset and let β _E be the σ – algebra of Borel subset of E. We say

a mapping x: $\Omega \rightarrow E$ is measurable if for any $B \in \beta_E$ one has

 $x^{-1}(B) = \{ (\omega, x) \in \Omega \times E : x (\omega, x) \in B \} \in \mathcal{A} \times \beta_E$

Where $A \times B_E$ is the direct product of the σ- algebras A and β _E those defined in Ω and E respectively.

Let Q: $\Omega \times E \rightarrow E$ be a mapping. Then Q is called a random operator if θ (ω , x) is measurable in ω for all x∈E and it is expressed as $Q(\omega)$ x = $Q(\omega, x)$. A random operator $Q(\omega)$ on E is called continuous (resp. compact, totally bounded and completely continuous) If $Q(\omega, x)$ is continuous (resp. compact, totally bounded and completely continuous) in x for all $\omega \in \Omega$.

Lemma 2.1[12]: Let $B_R(0)$ and $\overline{B_R}(0)$ be the open and closed ball centered at origin of radius R in the separable Banach space E and let Q: $\Omega \times \overline{B_R}(0) \rightarrow E$ be a compact and continuous random operator. Further suppose that there does not exists an u ϵ E with $||u||=R$ such that Q (ω) u = λ u for all $\lambda \in \Omega$ where $\lambda > 1$. Then the random equation $Q(\omega)x = x$ has a random solution, i.e. there is a measurable function $\xi:\Omega \to \overline{B_R}(0)$ such that $Q(\omega)\xi(\omega)=\xi(\omega)$ for all $\omega \in \Omega$.

Lemma 2.2[12]: (Carathéodory) Let Q: $\Omega \times E \rightarrow E$ be a mapping such that $Q(.x)$ is measurable for all xe E and Q(ω,.) is continuous for all ω $\epsilon\Omega$ Then the map (ω, x) $\rightarrow Q(\omega, x)$ is jointly measurable.

We seek random solution of (1.1) in Banach space C (J, ℝ) of continuous real valued function defined on J. We equip the space $C \in I$, R with the supremum norm**||.||** defined by

$$
||x|| = \sup_{t \in \mathcal{I}} |x(t)|
$$

It is known that the Banach space C $(\mathcal{I}, \mathbb{R})$ is separable. By L^1 (*J*, ℝ) we denote the space of Lebesgue measurable real-valued function defined on *J*. By $\left\| \cdot \right\| \cdot \right\|$ we denote the usual norm in L^1 (\mathcal{I}, \mathbb{R}) defined by

$$
||x||_L^1 = \int_0^1 |x(t)| dt
$$

We need the following definition in the sequel.

Definition 2.1: A Carath bodory function $f: \mathcal{I} \times \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ is called random L1- Carathéodory if for each real number r>0 there is a measurable and bounded function $h_r : \Omega \longrightarrow L^1(\mathcal{I}, \mathbb{R})$ such that

 $|f(t, x, \omega)| \leq h_r(t, \omega)$ a. e.t $\in \mathcal{I}$.

Where |x**|**≤ r and for all ω ϵ Ω

- We consider the following set of hypothesis
- H₁) The function $(t, x) \rightarrow f(t, x, \omega)$ is continuous for a.e. $ω ∈ Ω$.
- H₂) The function $\omega \rightarrow f(t, x, \omega)$ is measurable for a. e. $ω \in Ω$.
- H₃) There exist y ∈ℝ s.t. $x_0(\omega) \in \overline{B_R}(0)$ for a. e. ω ∈Ω where
	- $\overline{B_R}(0) = \{ x \in \mathbb{R} : ||x x_0|| \le \varepsilon \}.$
- H₄) There exist K>0 and x_0 ∈ Ω s.t. ||f(t, x, ω)|| ≤ $\frac{K}{\Gamma\alpha}$ a.e. $ω \in Ω$. And Γ is a gamma function

Our main existence result is

Theorem 2.1: Assume that the hypothesis $H_1 - H_4$ hold. Suppose that there exist a real number R>0 such that

 $R > r_1 || \gamma(\omega) ||_{L^1} \psi(\mathbb{R})$... (2.1)

for all $\omega \in \Omega$ where $r_1 = \max_{t \in [0,1]} r(t)$, $r(t)$ is in the greens function

Then the (1.1) has a random solution defined on $\mathcal I$

Proof: - Set E=C (\mathcal{I} , ℝ) and define a mapping Q: $\Omega \times$ $E \rightarrow E$ by

 $Q(\omega)x(t) = x_0(\omega) + \int_0^t g_\alpha(t-s)f(s, x_s(\omega), \omega)ds$ …(2.2)

a.e. $\omega \in \Omega$ and for all $t \in J$. (Equation (2.2) is an Integral representation of (1.1) Then the solution of (1.1) is fixed point of operator Q .

Define a closed ball $\overline{B_R}$ (0) in E centered at origin with radius R where the real number R satisfies the inequality (2.1) . We show that Q satisfies all the condition of lemma 2.1 on $\overline{B_R}(0)$.

First we show that Q is random operator in $\overline{B_R}$ (0). Since $f(t, x_t(\omega), \omega)$ is random Caratheodory and $x(t, \omega)$ ω) is measurable, the map $ω \rightarrow f(t, x_t(ω), ω)$ is measurable. Similarly the product $g_{\alpha}(t-s)f(s, x_s(\omega), \omega)$ of continuous and measurable function is again measurable. Further the integral is a limit of finite sum of measurable function . Therefore the map

$$
\Omega \to x_0(\omega) + \int_0^t g_\alpha(t-s) f(s, x_s(\omega), \omega) ds = Q(\omega) x(t)
$$

is measurable.

As a result Q is random operator on $\Omega \times \overline{\mathrm{B}_{\mathrm{R}}}$ (0) in to E.

Next we show that the random operator $Q(\omega)$ is continuous on $\overline{B_R}(0)$. Let x_n be a sequence of point in $\overline{B_R}$ (0) converging to the point x in $\overline{B_R}$ (0). Then it is sufficient to prove that

 $\lim_{n\to\infty} Q(\omega) x_n(t) = Q(\omega) x(t) \text{ for all } t \in J, \omega \in \Omega.$

By the dominated convergent theorem we obtain

$$
\lim_{n \to \infty} Q(\omega) x_n(t) = \lim_{n \to \infty} \left[x_0(\omega) + \int_0^t g_\alpha(t - s) f(s, x_n(\omega), \omega) ds \right]
$$

$$
= x_0(\omega) + \int_0^t g_\alpha(t-s) f(s, x_s(\omega), \omega) ds
$$

= Q(\omega)x(t)

For all $t \in J$, $\omega \in \Omega$. This shows that $Q(\omega)$ is a continuous random operator on $\overline{B_R}(0)$.

Now we show that $Q(\omega)$ is a compact random operator on $\overline{B_R}(0)$.

To finish it, we should prove that $\mathbb{Q}(\omega)(\overline{\mathbb{B}_R}$ (0)) is a uniformly bounded equi continuous set in E for each ω∈Ω. Since the map ω $\rightarrow \frac{Ka^{\alpha}}{Bu}$ $\frac{Ka^{\alpha}}{\Gamma\alpha+1} \leq \frac{\varepsilon}{2}$ $\frac{2}{2}$.

Let
$$
\omega \in \Omega
$$
 be fixed then for any x: $\Omega \to \overline{B_R}(0)$ has
\n $|Q(\omega)x_n(t) - x_0(\omega)| \le \int_0^t g_\alpha(t-s) |f(s, x_n(\omega), \omega)| ds$
\n $\le \frac{\kappa}{r_\alpha} \int_0^t (t-s)^{\alpha-1} ds$
\n $\le \frac{\kappa a^\alpha}{r_{\alpha+1}} \le \frac{\epsilon}{2}$

Next we show that $Q(\omega)(\overline{B_R}(0))$ is equicontinuous set in E for any $x \in \overline{B_R}(0)$, $t_1, t_2 \in J$, $\varepsilon > 0$ we have $|Q(\omega)x(t_1) - Q(\omega)x(t_2)| \leq \frac{K}{r_0}$ $\frac{K}{\Gamma\alpha} \int_0^{t_2} (t_2 - \tau)^{\alpha-1}$ – 0

$$
(t_1 - \tau)^{\alpha - 1} d\tau + \frac{K}{\Gamma \alpha} \int_{t_2}^{t_1} (t_1 - \tau)^{\alpha - 1} d\tau
$$

$$
\leq \frac{2K}{\Gamma \alpha + 1} (t - s)^{\alpha} < \epsilon
$$

Hence for all $t_1, t_2 \in J$

 $|Q(\omega)x(t_1) - Q(\omega)x(t_2)| \rightarrow 0$ as $t_1 \rightarrow t_2$ uniformly for all $x \in \overline{B_R}(0)$.

Therefore $\mathsf{Q}(\omega)\overline{\mathsf{B}_\mathrm{R}}\left(0\right)$ is . Then we know it is compact by Arzela – Ascoli theorem for each $\omega \in \Omega$. Consequently $\mathsf{Q}(\omega)$ is a completely continuous random operator on $\overline{\mathsf{B}_{\mathsf{R}}}$ (0).

Finally we suppose there exist such an element u in E with $||u|| = R$ satisfying $Q(\omega)u(t) = \lambda u(t, \omega)$ for some ω $\in \Omega$ and $\lambda > 1$. Now for this $\omega \in W$ we have

$$
\lambda u(t, \omega) = Q(\omega)u(t)
$$

\n
$$
| u(t, \omega) | \leq \frac{1}{\lambda} | Q(\omega)u(t) |
$$

\n
$$
\leq \frac{1}{\lambda} |x_0(\omega) + \int_0^t g_\alpha(t-s) f(s, x_s(\omega), \omega) ds |
$$

\n
$$
\leq \frac{1}{\lambda} x_0(\omega) + \frac{1}{\lambda} \int_0^t g_\alpha(t-s) f(s, x_s(\omega), \omega) ds
$$

\n
$$
\leq \frac{1}{\lambda} x_0(\omega) + \frac{k a^\alpha}{\lambda r \alpha + 1}
$$

\n
$$
\leq \rho
$$

For all $t \in J$ where $\rho = \frac{1}{2}$ $\frac{1}{\lambda}X_0(\omega) + \frac{ka^{\alpha}}{\lambda \Gamma \alpha + \alpha}$

This contradicts to inequality (2.1) this all the condition of lemma 2.1 are satisfied.

Hence random equation $Q(\omega)$ x(t) = x(t, ω) has a random solution in $\overline{B_R}$ (0) i.e. there exist a measurable function ξ : $\Omega \to \overline{B_R}(0)$ such that $Q(\omega)\xi(t)=\xi(t)$ for all $\omega \in \Omega$ and $t \in$ J. As a result RFDE (1.1) has a random solution defined on J. This completes the proof.

REFERENCES

- [1] T.T.Soong, Random Differential Equations in Science and Engineering, Academic Press, New York, 1973.
- [2] R. P. AGARWAL, M BENCHOHRA, S. HAMANI, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. DOI 10.1007/s10440-008-9356-6.
- [3] R. A. KHAN, Existence and approximation of solutions of nonlinear problems with integral boundary conditions, Dynamic Systems and Applications, **14** (2005), 281–296.
- [4] B.C. Dhage, S.K. Ntouyas, Existence and attractivity results for nonlinear first order random differential equations, Opuscula Math. 30 (2010) 4, 411–429.
- [5] B.C. Dhage, On global existence and attractivity results for nonlinear random integral equations, Panamer. Math. J. 19 (2009) 1, 97–111.
- [6] G.S. Ladde, V. Lakshmikantham, Random Differential Inequalities, Academic Press, New York, 1980.
- [7] B.C. Dhage, On n-th order nonlinear ordinary random differential equations, Nonlinear Oscil. 13 (2011) 4, 535–549.
- [8] V. Lupulescu, S.K. Ntoukas, Random fractional differential equations, International Electronic Journal of Pure and Applied Mathematics, 4 (2012) 2, 119–136.

Proceedings of 1st Shri Chhatrapati Shivaji Maharaj QIP Conference on Engineering Innovations Organized by Shri. Chhatrapati Shivaji Maharaj College of Engineering, Nepti, Ahmednagar In Association with JournalNX - A Multidisciplinary Peer Reviewed Journal, ISSN No: 2581-4230 **21st - 22nd February, 2018**

- [9] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, 2006
- [10] V. Lakshmikantham, A.S. Vatsala, Theory of fractional differential inequalities and applications, Commun. Appl. Anal. 11 (2007), 395–402.
- [11] V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008), 2677–2682.
- [12] B.C.Dhage, S.V. badgire, S.K.Ntouyas, Periodic boundary valu problem of second order random differential equation .Electron. J. Qaul. Theory Diff.Equ.,21(2009), 1-14.
- [13] M.K.Bhosale, R.N.Ingle,Second Order Nonlinear Functional Random Differential Equation, Journal of Global research in Mathematical Archives, 9(2013), 15-22 .
- [14] M.K.Bhosale, R.N.Ingle, Existence Theory For Second Order Nonlinear Functional Random Differential Equation In Banach Algebra, IOSR-JM, 11(2015) 6- 12.