DESIGN AND MANUFACTURING PROCESS OF SMALL SCALE WATER TURBINE BY USING RPRT FOR ENERGY HARVESTING

MRS. URMILA S. ZOPE

Engineering sciences and allied engineering department, Professor (Mechanical) at Bharti Vidyapeeth's college of Engg for Women, (BVCOEW), Pune-43, India, Email- ums33333zope@gmail.com

MRS. DIKSHA P. CHOPADE

Engineering sciences and allied engineering department, Professor (Electrical) at Bharti Vidyapeeth's college of Engg for Women, (BVCOEW), Pune-43, India,Email- dikshachopade@gmail.com

MRS. PRATIBHA M. KARANDIKAR

Mechanical engineering department, PREC Loni, Tal Rahata, Dist-Ahmednagar, Ahmendnagar, India,

Α

Email- pkarandikar04@gmail.com

ABSTRACT:

Natural resources like river. stream. waterfall can be used for the generation of power. In this the horizontal axis impulse turbine is designed in which water jet is impulsed which strikes tangentially on the integrated vanes or rotor. Turbine designing is for small applicatiom, where limited power is generated which can be uitilised for lighting a power bulb or for battery charge Working on this topic resulted into dea h & manufacture of the small scale low cost & l ght turbine, for which rapid prototype manufact and technique is used suggested. Turbi manufactured by RP technique is not suitable for commercial use but for small a in remote aresa where reach of ectrificati grid is impossible. **KEYWORDS:** RP, Energy sting

manufacture, turbin design.

I.INTRODUCTION:

urbine white Small scale wate lso microhydro pow rbine. mi known hvdro turbir.es eveloped from las turies back. Means power generation the use of na water source for t is a old techni exist. In thi wok, new design of w and cost, low weight turbine alongwiet manufacturing technic introduced. Also anlysis of the turbine vane is done.

II.DESIGN FOR THE TURBINE PROTOTYPE:

Very initial consideration for the microhydro turbine is limited space availability ranging from 1 to 5 feet for installing that designed turbine. Accordingly limitations are kept to the sizes of the turbine parts.

DIAGRAMS OF A

ESIGNED PARTS:

ш

Rotor1 (Diameter 135)

Turbine assembly drawing

NOVATEUR PUBLICATIONS International Journal Of Research Publications In Engineering And Technology [IIRPET] ISSN: 2454-7875 VOLUME 3, ISSUE 3, Mar. -2017

Where:

Ball bearing-NO 1205-Inner Diameter 25, outer diameter-52, width 12mm. ηh hydraulic efficiency [-] ρ water density [kg/m3] b. Cylinderical roller bearing no-16005, Inner diameter 25, outer diametere 47, width 08mm. g gravitational acceleration [m/s²] 7) Flow velocity $V_f = 1, 1.5, 2, 2.5$ and 3 m/sec8) N rotational speed of the rotor= limit 150 to 430rpm. 9) Net head $H_n = 1$ feet to 5 feet. FOR FURTHER CALCULAT Following are the known 10) Gravitational accleration g=9.81m/sec² 11) Q = flow rate of waterstream = $\rho = 1000 \text{kg} / \text{m}^3$ minimum $0.0176 \frac{m}{\sec^3}$, maximum $0.1472 \frac{m}{\sec^3}$ $g = 9.81 m/s^2$ 12) $R_L = Length of the rotor = 45mm$ Consider, η_h 13) $B_c = chord of the blade$ 14) $\omega = rotational speed of the rotor = \frac{2\pi N}{60}$ lation of turbine efficien 3. Cal 15) RPM of Rotor = $38.6 \times \sqrt{H_n/D_r}$ maximum turbine efficiency ca Τł 16) $V_{\rm F} = Impact \ velocity \ of \ water.$ 17) θ = angle of blade = subtended - 120° $\cos \lambda(\alpha)$ blade roughnes wher **IV.DESIGN STEPS:** (4)(from design of high efficiency cross flow turbin om above ion. hydropower plant by Bilal Nasir) ficiency, the A) The design procedure of the cross-flg ne bossible. involves the following steps: 4. Calculation of the turbine speed (N): 1. Preparing the site data This involves the calculations and ring the net ead H_n is head of the hydro-power plant ap w rate. tS Wa $=\frac{513.25}{Hn^{0.505}}$ a. Calculation of the d (Hn): $H_n = H_g - H_f$ (n) (5)(1)

Where,

Hg = the gross head wwas the ve distance between vater surface lev the intake the distance asured turbine modern electionic l levels.

Hf = total he sses due to the o en channel, trash rack, intake, per and gat lue. These losses I to 10% or gross head. were approximately

b. Calculation of weter flow rate (Q):

The water flow rate can be alculated by measuring river or stream flow velocity (Vr) and river cross-sectional area (Ar),

then:

 $Q = V_r \times A_r \quad (m^3/sec)$ (2)

 $245 \times length 45$.

6) Bearings -two types

а

2. Calculation of turbine power (Pt)

The electrical power of the turbine in Watt can be calculated as:

 $P_t = Q \times H_n \times \rho \times g \times \eta_h$ (W)(3)

- Q discharge [m3/s]
- Hn gross head [m]

alculated as:

pefficient (0.98)

clear that for maximum turbine angle (α) should be kept as small as

The correlation between specific speed (N_s) and net

for the cross-flow turbine as following,

Also the specific speed in terms of turbine power in Kw, turbine speed in (r.p.m) and net head in (m) is given as, [9]

$$N_s = N \times \frac{\sqrt{Pt}}{Hn^{1.25}}$$
(6)

From above equations (5) and (6), the turbine speed can be

calculated as:

$$N = 513.25 \times H_n^{0.745} / \sqrt{Pt}$$
(rpm)

(7)

5. Calculation of runner outer diameter (D_{a})

At maximum efficiency, the tangential velocity of the runner

Outer periphery is given as [26]

 $Vt_r = \frac{1}{2} \times C \times (\sqrt{2} \times g \times H_n)(\cos \alpha)$ (8)

Also as we know,

NOVATEUR PUBLICATIONS International Journal Of Research Publications In Engineering And Technology [IJRPET] ISSN: 2454-7875 VOLUME 3. ISSUE 3. Mar. -2017

$V_{tr} = W \times \frac{D_o}{2} = 2\pi N D_o / 120$	As we know, $D_o = 40 \times \sqrt{H_n}/N$
(9)	Putting above value in equation (17)
By comparing eq. $(8) \& (9)$ the runner outer diameter	$L = Q \times N / (50 \times H_n)$
can be calculated as :	(19)
$D = 40 \times \sqrt{Hn}$ ()	By putting above value of 'L' into equation of Jet
$D_o = 40 \times \frac{1}{N} \qquad (m)$	thickness (tj),
(10)	A_i
6. Calculation of blade spacing (<i>S</i> _b):	$t_j = \frac{1}{L}$
The thickness of jet entrance t_{je} measured at right angles	We obtain,
to	$ti = 11.7 \times \frac{\sqrt{H_n}}{2}$
the tangential velocity of runner is given as [26]	³ _N (20)
$t_{je} = k \times D_o \tag{(m)}$	From eq. of Do
(11)	$\sqrt{H_{T}}$ D ₀
Where $K = constant = 0.087$	$\frac{\sqrt{N}}{N} = \frac{1}{40}$, so put fig in eq. (20)
The tangential blade spacing (Sb) is given as[26]	$ti = 11.7 \times \frac{D_o}{2}$
$S_b = \frac{t_{je}}{\sin \beta t} = k \times \frac{Do}{\sin \beta t}$	
(12)	$tJ = 0.9 \times D_0 (m)$
Where β^{β} 1- blade inlet angle =30°. when Attack angle	
$\alpha = 16^{\circ}$. Calculation of the distance between water jet and
Thus, $S_{\rm b} = 0.174 \times D_{\rm c}$	enter
(13)	$\begin{array}{c} \text{OI} & \text{OI} \\ \text{vi} \\ \text{vi} \\ \text{vi} \\ \text{vi} \\ \text{orbit} \\ \text{vi} \\ \text{vi} \\ \text{vi} \\ \text{orbit} \\ \text{vi} \\ v$
	$y_1 = c \qquad x D_0$ (Imperical relation)
7. Calculation of the radial rim width (α):	22 Calcula with a stance between water jet and
It is the difference between the outer radius and	2. Calculation file istance between water jet and
inner radius (ri) of the turbine runner, and it have	nerinhery of rugger (y_2) [26]
equal to the blade spacing and can be given as:	$v^2 = 0.05 \times D$
$\alpha = 0.174 \times D_o$	$y_2 = 0.03 \times D_0$ (23)
(14)	(20) 3. Calculation of inner diameter of the runner (Di)
8. Calculation of the runner blade number .)	
The number of the runner block can be determined as :	$h = D_{a} - 2 \propto$
$n = \pi \times D_o / S_b$	(24)
	14. Calculation of the radius blade curvature (r_c) [26]
	$r_c = 0.163 \times D_o$
9. Calculation of the way iet thicknes	(25)
It is also defined as nozzle to b and can be to bated as	15. Calculation of the blade inlet and exit angles
	(β1andβ2) [26]
$t_i = \frac{A}{2}$	The blade inlet angle can be calculated as ,
Where $\Delta i - Let$	$\tan\beta 1 = 2 \times \tan\alpha$
As $Q = A \times K$	The blade exit angle $\beta_2 = 90^\circ$ for perfect radial flow, but
$\prod_{j=1}^{n} (j) = \prod_{j=1}^{n} (v_j)$	it must be equal to β_1 at maximum efficiency.
Therefore, $t_j = \frac{v_j}{v_j}$	(26)
$0/[C \times (\sqrt{2} \times a \times H_{*}) \times L_{*} - 0.233 \times 0/(L \times \sqrt{H_{*}})$	
(16)	V.APPROACH FOR DESIGNING:
	Idea of designing integrated vanes/blade on
10. Calculation of runner length (L):	rotor having some thickness, & shape is somewhat
The runner length in (m) can be calculated as:	semicircular whose subtended angle is kept 120° , is
From reference [26]	came from the concept of banki water turbine. The
$L \times D_{o} = 0.81 \times O / \sqrt{H_{m}}$ (it is in metric units)	difference between banki water turbine design & the
(17)	turbine designed in this paper is that, bucket which
$L \times D_{o} = 210 \times 0 / \sqrt{H_{r}}$ (it is in british units)	naving specific dimensions are mounted on the rotor by
(18)	integrated vanes on the rotor this design may reduce the

integrated vanes on the rotor this design may reduce the

NOVATEUR PUBLICATIONS International Journal Of Research Publications In Engineering And Technology [IJRPET] ISSN: 2454-7875 VOLUME 3, ISSUE 3, Mar. -2017

overall cost of the design & manufacture. The tangential water flow falling on the vanes causes the vanes to rotate & ultimately rotates the rotor, & to the keyed shaft. The shaft on which rotor is mounted is supported in stand by means of ball bearing in the stand.

For deciding geometry profile of the vane the referance is taken from paper 'Design & manufacture of micro zero head turbine for power genreation which was published in 2011'.

A thought behind designing semicircular vane is that when water strikes tangentially & go downwards to enter into next vane, maximum mass of water should enter cause the rotation of rotor to fulfill the purpose. The thickness of vane is decided from strength to thickness ratio.

By referring number of papers, the relationship of applied force of water can be given as-

 $F_i = \rho \times A \times V \times (V - u)$

Where, F_i = Impact force (initial force)

 ρ = water density.

V= Free stream/waterfall velocity.

A=Designed vane area.

u=tangential velocity of vane.

It is to be decided to kept 8 numbers of es on the rotor whose outer diameter is 135mp ce angle between two blades is maintained is 45°, falling some perticular heightis tangential to backsurface of the vane, means initi e velocity of the blade is assumed to be zero, it leans So, $F_{i'}$ = initial force of water n be calcula as- $F_i = \rho \times A \times V \times (V - 0)$ tially u=($F_i = \rho \times AV^2$

As wate nters into s vane, entermass of water net su t to rotate so again its initial velocity u is consid as zero. But between 5º, denoted two conservative vanes kep One import ing is that flow of on the bl de is kept tangential tate the rotor in direction only. So waterflow & the back surface of a angle betwee vane is considered 1 which 0 to 5^{0.}

> Chord area $00 \times Arclength$ $Chord area = \frac{120}{360} \times 32$ $Area=10.667mm^2$ $i.e= Area=0.0010667m^2$ From above equation: $F_i = \rho \times AV^2$ Take value of $V_f = 1, 1.5, 2, 2.5, 3m/sec$ 1). $F_i = 1000 \times 0.0010667 \times (1)^2$ $F_i = 1.0667N$ 2). $F_i = 1000 \times 0.0010667 \times (1.5)^2$ $F_i = 2.4N$

3).
$$F_i = 1000 \times 0.0010667 \times (2)^2$$

 $F_i = 4.2668N$
3). $F_i = 1000 \times 0.0010667 \times (2.5)^2$
 $F_i = 6.6668N$
4). $F_i = 1000 \times 0.0010667 \times (3)^2$
 $F_i = 9.6N$

From above explained designed procedure, As circumferance of rotor is $2\pi R = 2 \times \pi \times 75 = 471.23mm$

And blade spacing is $S_b = 174 \times D_o$

S

$$5 - 0.174 \times 150$$

$$S_b = 26.1$$

So, no of blades with $ba = 18.05 \approx 18 \text{ nos.}$

But we are taken minimum on the mbers of blades i.e. 08.

VI.CALCOLL TIONS:

Approach to design this to use is starts from acce availability accordingly maximum size is decided the turbine. In this some parameters are assumedthere density 1000kg m³

 $g = g_1$ and $acceleration 9.81 m/s^2$

 H_n =Net lassumed 0.5; & 1m.

 $_{h}$ =hydrau ficiency assumed 80% \approx 0.8

_R=Rotor diah

 p_p = Rotor pitch commeter = 150mm

 V_f =Flow velocity=1m/s; 1.5m/s; and 2m/s.

As we know, $\mathbb{P}=\rho_w \times g \times H_n \times \eta_h \times Q$

ut,
$$Q = Area \ of \ turbine \times Flow \ velocity(V_f)$$

flow velocity $V_f = 1$ m/s.

$$Q_1 = \frac{\pi}{4} (Dp^2) \times V_f$$
$$Q_1 = \frac{\pi}{4} (0.15^2) \times 1$$

 $Q_1 = 0.0176m^3/s$ II-For flow velocity $V_c = 1.5m/s$

1-For flow velocity
$$V_f = 1.5 \text{ m/s}$$

$$Q_{2} = \frac{\pi}{4} (Dp^{2}) \times V_{f}$$

$$Q_{2} = \frac{\pi}{4} (Dp^{2}) \times 1.5$$

$$Q_{2} = 0.0265m^{3}/s$$
III-For flow velocity $V_{f} = 2m/s$

$$Q_{3} = \frac{\pi}{4} (Dp^{2}) \times V_{f}$$

$$Q_{3} = \frac{\pi}{4} (Dp^{2}) \times 2$$

$$Q_{3} = 0.0353m^{3}/s$$
Case I- For Net head **1** *feet means* **0.3m**.

$$\boxed{P_{1} = \rho_{w} \times g \times H_{n} \times \eta_{h} \times Q_{1}}$$
P_{1}=1000 × 9.81 × 0.3 × 0.8 × 0.0176

$$\boxed{P_{1}=41.43 \text{ watt}}$$

$$\boxed{\mathbb{Z}_{2} = \mathbb{Z}_{\mathbb{N}} \times \mathbb{Z} \times \mathbb{Z}_{\mathbb{Z}} \times \mathbb{Z}_{h} \times \mathbb{Z}_{2}}$$

$$\boxed{\mathbb{Z}_{2} = 1000 \times 9.81 \times 0.3 \times 0.8 \times 0.0265}$$

P₂=62.39 watt

NOVATEUR PUBLICATIONS International Journal Of Research Publications In Engineering And Technology [IJRPET] ISSN: 2454-7875 VOLUME 3, ISSUE 3, Mar. -2017

son

$\mathbb{P}_{3} = \mathbb{P}_{\mathbb{P}} \times \mathbb{P} \times \mathbb{P}_{\mathbb{P}} \times \mathbb{P}_{h} \times \mathbb{P}_{3}$				
$\mathbb{P}_3 = 1000 \times 9.81 \times 0.3 \times 0.8 \times 0.0353$				
P ₃ =83.11 watt				
Case II- For Net head 0.5 <i>m</i> .				

 $\boxed{\mathbb{D}_1 = \mathbb{D}_m \times \mathbb{D} \times \mathbb{D}_m \times \mathbb{D}_h \times \mathbb{D}_1}$

$P_1=1000 \times 9.81 \times 0.5 \times 0.8 \times 0.0176$				
P ₁ = 69.06 watt				
$\mathbb{P}_2 = \mathbb{P}_{_{[\!\!\!\!]}} \times \mathbb{P} \times \mathbb{P}_{_{[\!\!\!\!]}} \times \mathbb{P}_h \times \mathbb{P}_2$				
$\mathbb{Z}_2 = 1000 \times 9.81 \times 0.5 \times 0.8 \times 0.0265$				
P ₂ = 103.986 watt				
$\mathbb{P}_{3} = \mathbb{P}_{\mathbb{P}} \times \mathbb{P} \times \mathbb{P}_{\mathbb{P}} \times \mathbb{P}_{h} \times \mathbb{P}_{3}$				
$\square_3 = 1000 \times 9.81 \times 0.5 \times 0.8 \times 0.0353$				
P ₃ = 138.51 watt				

VII.MATERIAL AND MANUFACTURING:

Selection of material: for the designed parts, as FDM RP technology is finalized to manufacture those parts so ABSM30-thermoplastic material is decided, to use this material having following properties: ABS M30 (acryolonitrile butadine sterene M30) is 25 to 70 percent stronger than standard ABS (acryolonitrile butadine sterene).

Greater tensile, impact, and flexural strength the standard Stratasys ABS.

Layer bonding is significantly stronger for a more durable part than standard Stratasys ABS.

Versatile Material: Good for formation functional applications.

ABS M30 parts are stronger poother and live better feature details.

Tensile strength=36M

Tensile elongation

Flexural stress=61Mpa

Izod impact=139J/m

Heat defle ion=96°

Unique provides = Variety of compositions

Density of aterial=(at 20° C r 68° F) >1

g/cm³(>8.345h []) Young's modulus includulus of acity= 1.4 -3.1(10⁹ N/m² OR GPA)

VIII.FORTUS SYSTEM OF DM RP TECHNIQUE:

Fortus 3D production system offer unparalleded versatility and capability to turn CAD files into real parts, which are tough enough to be used as advanced conceptual models, functional prototyping, manufacturing tools and end use-parts. Variety of products can be produce just by loading different files and materials, which is not possible by traditional machining processes. Fortus system can produce a real end use thermoplastic parts directly form CAD files without using expensive tooling. Fortus 3D system is streamline process from design through manufacturing, reducing costs and eliminating traditional barriers along the way.

IX.SOFTWARE USED IN FDM:

Insight software: Insight software prepares 3D digital parts files (o/p as and .STL file) to be manufactured on a fortus system by automatically slicing and generating support structure and mate extrusion path in a single push of button. If neces my user can override insights dit parameters that control the defaults to manually n of parts as well as the time look, strength and throughput, exp ises and siency of the FDM process. softwart Control cent is a software that tes between the use rkstations and fortus communi syster, managing jobs and mon. g the production as of fortus system. It provides a of to maximize st hput and utilization while minimizing iciency, thro The software is included with Insight nse time

X. Flowchart for manufacturing of pico hydro turbine

XI.THEORY OF DESIGN:

Under this topic actual design of vertical flow waterwheel turbine is discussed. Uptill now work on designing and manufacturing of metallic water turbine for various purposes was done. So accordingly various head ranges turbines like high head, medium head, low head, micro head and pico head were designed, manufactured and was used for different applications. Aim of project is to design and to manufacture the turbine which can be efficiently used which having low design and manufacture cost also should be light in weight. By keeping this concept in mind, different parts of turbine are started to design. Initially primary conceptual drawing is completed. Sizes of parts are limited by space availability, and as type of hydro power is initially decided, which fixes range of power generation. After completing these basic things, next step was to it into 3D parts by using any 3D software. For 3D modeling of these parts Pro-e-wildfire software was used. Now for minimizing weight as well as cost advanced additive manufacturing technology was decided to use namely-Rapid prototyping. What is this RP technology and its different techniques it was explained in earlier chapter. By studying FDM RP technique is finalized. All 3D parts model are shown in appendix-I.

In a design rotor and shaft sizes are important, by theoretical calculations there is a lange in power generation by changing the rotor and to what was those changes we taken three different si rotor-135mm, 175mm, and 225mm. as a case study. So accordingly RP machine enquiry e, but cost of machine is few lacs which was no o decided rchasing o to write a proposal regarding achine. As this process may take few so it wa lecided to manufacture all these parts fr ippli clear idea about g ity and th ulness of product manufactur ue. For this this RP tee approached to "Design-Pvt Ltd Com based in According ed of pune (suprifier of RP mach 3D models of part nto .STP technia convertee nput to RP-Fortus further used as file, which 360mc (FDM ine). Important th of this technique sed for m turing these parts is that raw mate was thermoplastic, sh makes parts light in weight, metallic part as they are free also life period is more from corrosion, which it ces the life of parts. The peoples given estimation of manufacturing cost of those parts which is nearly 1.5lacs. Initially by including all cost parameters manufacturing cost goes very high. But after few years cost of product becomes very less. The parts coming through the machine are end user parts.

Before actually manufacturing these parts it was necessary to anlyze the very important part of turbine that is rotor, vanes integrated on outer periphery of rotor. So analysis of vane for checking stress strength at the given condition was checked in ansys14.5 software.

XII.TABULAR PRESENTATION OF ALL ANALYZED PARAMETERS FOR ALL THREE CASES:

Similarly, case three in which rotor size is 225mm and rotor pitch diameter is 250mm also vane size is different having thickness 4mm, height is 50mm.Accordingly results obtained are presented in tabular form as follows:-

	Case	Hub dia	PCD	Area	Velocity	force	Pressure	Yield Strength	Von mises stress (Max)	Deformation
		mm	mm	m^2	m/s	N	Pa	Mpa	Pa	m
	1	135	150	0.001		1	1000	40	904600	0.0001107
				0.001	15	2,25	2250	40	2035300	0.00024921
				0.001	2	4	4000	40	3618400	0.00044304
	2	175	200	0.0021563	15	4.851675	2250	40	1018400	0.00014671
				0.0021563	2	8.62 52	4000	40	1810400	0.00026082
			K	0.0021563	2.5	13.476875	6250	40	2828800	0.00040754
				000001563	3	19.4067	9000	40	4073500	0.00058685
						·				
	3	225	250	0.0026953	15	6.064425	2250	40	1009100	0.00014545
				0.0026953	2	10.7812	4000	40	1793900	0.00025858
				0.0026953	2.5	16.845625	6250	40	2803000	0.00040404
				0.0026953	3	24.2577	9000	40	4036300	0.00058182

Table3: Tabular presentation of all analyzed parameters.

XIII. Advantages & Disadvantages of Microturbine-Advantages:

- Especially in mountainous areas where Grid Connection is expensive and unreliable micro hydro turbine is used.
- Micro turbines are few moving parts, compact systems, good efficiency.
- Micro turbines can operate continuously or Ondemand and be either grid connected or stand alone. Not like the big hydro plants that use dams and create giant lakes behind the dams, micro-hydro plants only divert a small fraction of the stream and they don't need a water storage pool.
- In rare cases where the site is close to grid lines, part of the produced power can be sold back to the utility, and the grid serves as backup.
- The micro hydro plant requires low maintenance.
- Microhydro systems produce no pollution

NOVATEUR PUBLICATIONS International Journal Of Research Publications In Engineering And Technology [IJRPET] ISSN: 2454-7875 VOLUME 3, ISSUE 3, Mar. -2017

DISADVANTAGES:

- As the power demand increases the size of the plant cannot be easily expandable.
- During the summer season there will be less flow and therefore less power output. Advanced planning and research will be needed to ensure adequate energy requirements.

ACKNOWLEDGMENT:

I am very thankful to Prof. P. S. Pingle who was my project guide, he helped me in all ways from starting to the submission of work, also thankful to Mechanical Engineering Department peoples for time to time help. Also thanks to my cologues who helped me in all ways.

REFERENCES:

- 1) Mohammad Durali, MIT Cambridge ," *Design of small water turbine for farms & small communities*", 1976.
- O. D. Thapar, Small / Mini hydro power technology, research & Education (state of art), Alternate hydro energy center W.R.D.T.C University of Roorkee,(Unesco regional meeting, Colombo) May 1983
- 3) Alastair Gill, ESD, Neston Paul Mosley, Deprement of Economics and David J. Fulford, Energy, Tup, Department of Engineering, "Community M Hydro in LDCs: Adoption, Management and Pover, Impact", July-1999.
- 4) J. L. Gordon, P Engg, "*Turbing selects* and *small low head hydro developments*" by 2003.
- 5) Phommachanh, Junichi and kowa, Chu Nakijama, "Development of positive mice and tro type 10006.
- 6) Miyoshi Nakijim, Shishnu Unhan, "Performs, of savonius can be for environ, tally friendly hydraulic turbine", D. 207.
- 7) Abhijit Date, RMIT to crisity, *"Low Low ample reason water turbine"*, *A*, 1009.
- 8) Toshh, Jiedo, Jio, Ke, Tassuno, Shisnu Universit, Performance of nan hydraulic turbine utilizing wat and ", July-2002
- 9) Fred Coll ores Hernandez, Nicholas Mohammed,"Design in Micro-Hydro Turbine Test Rig",2009.
- 10) Interim report prepared by Applegate Group, Inc, "Exploring the viability of the low head hydro in colarado's existing irrigation infrastructure" ,Sep'2010.
- 11) Canyon hydro, "Guide to hydropower-an intorduction to hydropower concept & planning"
- 12) Dr. R.P. Sani, IIT Roorki, "Small hydropower generations", May-2011.

- 13) Research article-by-Kailash Golecha, Eldho, & S. V. Prabhu, "Study on the interaction between two hydrokinetic savonius turbines", Nov-2011.
- 14) Ali Arslan, LizwanKhalid, Nassan & Manarvi, Hitech University, taxila, "Design & manufacture of micro zero head turbine for power generation"
- 15) Abhijit Date, AliakabarAkbarzadeh, RMIT university, "Design analysis and the investigation of low head simple reaction water turbine"
- 16) Bryan Patrick-Ho-Yan, "pesign of the low head pico hydro turbine for rund electrification in cameroon", April-2012.
- 17) Bilal Abdullah and "Design of high efficiency cross flow turbing for hydronic plant", Feb-2013.
- 18) Sudhir Man J.T. Kshirs, and Y.S. Rana, KBL pune, " Kirlo or brothers in small, "".
- 19) Bi al Abdullah Nasir, IJEA Design of micro hydroelectric power station", June 2000.
- 1) Cha-8, " *Mid phydro energy resource*". FatmaAyaran, UmutAradag, EceOzkaya, Grout of the runner dusign & manufacturing".
- 22) Louis Gudukeya, Igratio Madanhir, "Efficiency improduct of peltons heel and crossflow turbines in micro hyper over plants: casestudy"
- 3) Abhijit Data and Prof. AliakbarAkbarzadeh, RMIT university, "Design Analysis and Investigation of a Low-Head Simple Reaction Water Turbine".
- 24) "Article on microhydro power"
- 5/ Appleyard, D. Opening the Door to India's Small, (2013, Janurary 7).Hydro Capacity., from HydroWorld: http://www.hydroworld.com.
- 26) Timo Flaspöhler, "Design of the runner of a Kaplan turbine for small hydroelectric power plants".
- 27) Fred Merryfield (Prof .civil engg), " *The banki water turbine*".
- 28) Sebastian Hermann, "Design of a micro hydro powered battery charging system for rural village electrification".
- 29) Dilip Singh, Micro Hydro Power Resource Assessment Handbook Prepared for APCTT (Asian and Pacific Centre for Transfer of Technology Of the United Nations – Economic and Social Commission for Asia and the Pacific (ESCAP), September 2009.
- 30) R.S. Patel, G. I. Joshi, G. H. Joshi, Assessment of Hydropower Potential Through Canal Falls Situated Along Vadodara Branch Canal, May 2014.

WEBSITES:

- 1) NHPC: www.nhpcindia.com
- 2) Ministry of Power: www.powermin.nic.in
- 3) Minihydropowerplants-source- www.google.com

BOOK:

1) Fluid mechanics and hydraulic machines By- R. S. Khurmi.

2) Design of machine elements. By V. B. Bhandari

