
NOVATEUR PUBLICATIONS
International Journal of Research Publications in Engineering and Technology [IJRPET]

ISSN: 2454-7875
VOLUME 3, ISSUE 3, March-2017

87 | P a g e

FIDOOP – FIM: DATA SEGREGATION USING FREQUENT ITEM SETS

MINING AND MAP REDUCE ALGORITHM
DARSHANA WAJEKAR

Department of Computer Engineering Pillai HOC College of Engineering and Technology

Rasayani, Tal: Khalapur, Dist: Raigad darsh.wajekar90@gmail.com

PROF. EKTA UKEY

Department of Computer Engineering Pillai HOC College of Engineering and Technology

Rasayani, Tal: Khalapur, Dist: Raigad eukey@mes.ac.in

ABSTRACT

Hadoop is an open-source platform of the

MapReduce programming model. As data size is

increasing gradually day by day, the improvement and

security of data structure in Hadoop have become a

critical issue. So far, algorithms have lacked of

mechanisms like data distribution, fault tolerance,

load balancing and input-output overhead. Hence, in

order to overcome these discrepancies, the most

effective the new method is the FiDoop method using a

Map Reduce programming model and FIM algorithm.

FiDoop includes the Frequent Item set Ulta metric Tree

rather than conventional FP-trees which avoid the

necessity to build conditional pattern based on

compressed storage. In prior techniques such as pfp,

Fidoop and Fidoop-HD the execution time was

considerably increasing when the number of records

increased. In our proposed system, firstly, the

input/output overhead is minimized by scanning the

database twice. Secondly, FIUT matric which is an

outcome of clustering improves in the partitioning of

database and significantly reduce the search space.

Later MapReduce plays main act in parallel mining

process; mappers separately decay item sets while its

reducers make tiny ultra-metric trees to be

individually mined. Finally, Fidoop - FIM based on FIM

algorithm highly reduces the execution speed of

downloading as the number of records increases in

size.

KEYWORDS: Hadoop, computing time, Load Balancing,

MapReduce, Frequent itemset, Scalability, Fidoop-HD,

Fidoop – FIM

I. INTRODUCTION:

Data mining, is a technique to discern and convert

raw data into useful information. It is increasingly being

used in a variety of fields like scientific discoveries,

marketing, Internet searches, multimedia, biotechnology

and business intelligence. Data mining is a

multidisciplinary field combining ideas from, machine

learning, natural language processing and statistics.

Big data is collecting a huge amount of data sets

that cannot be processed using traditional computing

techniques. In 2005, Mike Cafarella and Doug Cutting

provided key by Google and begin an open-source project

called HADOOP. Now a day's Apache Hadoop is registered

trade name of the Apache Software Foundation. Businesses

have greatly benefited from data analytics. Companies are

analyzing activities such as sales, stock optimization,

advertising and consumer support to improve their

strategic, tactical business decision, fraud and risk

management. A majority of trendy applications grow to be

data-intensive in nature. Illustrative data-intensive web

applications consist of on-line auctions, search engines,

customizing content for users, supply-chain management,

webmail, on-line retail sales, bio informatics, beyond

analytics data, fraud analysis, miscellaneous uses, etc.;

Hadoop is an open-source accomplishment of

MapReduce, supported by leading IT companies such as

Google and Yahoo! Hadoop implements MapReduce

framework with two categories of components: a Job

Tracker and various Task Trackers. Task Trackers are

managed by the Job Tracker and launched on apiece

computational node to perform the tasks they receives

from Job Tracker. Data processing is performed in parallel

through two main tasks: map and reduce. The Job Tracker

is in charge of scheduling the map tasks (Map Tasks) and

reduce tasks (Reduce Tasks) toward Task Trackers. It also

monitors job progress, collects runtime execution

statistics, handles possible faults and errors throughout

task re-execution. Hadoop merges these intermediary data

segments of map task when numbers of data segments go

over a threshold. The current merging algorithm

frequently merges data segments which cause multiple

rounds of disk access for equal data. This degrades the

performance of Hadoop.

MapReduce is model for working on distributed

computations and huge amount of data. It provides the

framework for large scale data processing on commodity

hardware. Hadoop distributed file system follows

distributed file system and MapReduce is just a

programming technique to solve the problem. Mapper and

Reducer are the two main components of MapReduce

NOVATEUR PUBLICATIONS
International Journal of Research Publications in Engineering and Technology [IJRPET]

ISSN: 2454-7875
VOLUME 3, ISSUE 3, March-2017

88 | P a g e

programming. Each mapper receives pair of key-value as

an input and it produces the intermediate arbitrary pairs

of key-value as an output. MapReduce is required as it

provides abstraction layer to the system-level functions. It

just enables developer to perform their operation rather

than focusing how to perform that operation.

Big data is a complex task but with help of

distributed programming approach it can be resolved.

MapReduce is new framework which handles large data

using distributed com-putting on large-scale clusters.

HDFS a distributed file system stores the input data,

MapReduce applies a divide and conquer technique to

divide the input data sets into small data sets, and then

processed on different machines, which has achieved

parallelism. MapReduce follows three step workflow which

is Map, Shuffle and Reduce. Data in MapReduce framework

is seen as a series of key-value pairs.

 In this paper we study about the related work done

on the feature selection techniques in section II, the

implementation details in section III where we see the

system architecture, modules description and algorithms.

In section IV we discuss about the expected results and at

last we provide a conclusion in section V.

II. RELATED WORK:

In this section, the review of literature relevant to

replication merges, disk accesses data and delays the

reduce phase are presented. A key issue traced from the

referred sources are presented.

Yaling Xun et al. [1] proposed an ultra-metric tree

for mining frequent item set ultra-metric provided four

advantages of FP and Apriori like partitioning a database in

a minimizing input-output and compressed storage.

FiDoop - HD is an algorithm designed to overcome the

problems like fault tolerance, automatic parallelization,

load balancing, and distribution on the large cluster.

B. Al-Maqeleh et.al. [2] had proposed issue of such

a process is that the explanation of patterns has to be

accomplished merely on frequent item sets. An effective

algorithm was introduced to participate in confidence

determining throughout of the process of item sets of

frequent mining and significantly improves the

performance of mining association rules by deducting the

search space. The experimental outcome shows that thee

effectively of the proposed algorithm in decreasing the

number of revealed processes associating with the Apriori

algorithm.

Y. Jia et.al. [3] had introduced an enhanced

procedure depended on a collaboration of aggressive item-

sets counting and data division. The suggested procedure

has enhanced the two main difficulties which are meet by a

typical Apriori algorithm. First difficulty was to the

repeatedly scanning of a transactional database. Second

difficulty was to the creation of a huge number of

candidate sets. In the of data division, the transactional

database was distributed into the n number of parts that

did not interconnect with each and every other. First scan

task, all the frequent item sets of each division are mined

this is called local frequent sets. The second scan, the

entire database was scanned again and acquired support

degree of all candidate item sets, then determining the

global or all frequent item sets. After the task of data

division, collaboration item sets computing were used to

resolve the candidate items sets prior to scanning database

every time. So that the entire procedure requires two times

the whole database scan.

R. Chang et al. [4] introduced an improve Apriori

algorithm in the level L2 was instantly produced from one

time scan across the database without generating

candidate sets L1, C1, C2. Apriori improves the algorithm

operate efficient horizontal data representation and hash

table. Improve Apriori algorithm also enhanced the

approach of storage to save space and time. The

experimental outcome of Apriori improves the algorithm

was advanced as related to fp -growth and Apriori.

Moens et al. [5] proposed two different technique

for storing frequent item set in MapReduce structure. First

technique DistEclat was the scattered type of only Eclat

technique, which elevates the speed which allocating the

search space between mappers. Second technique BigFIM

usages Apriori and Eclat depended on technique, which is

planned with databases that convenient in memory space

for removing frequent item sets. The benefit of Dist-Eclat

and BigFIM was that it to be responsible for scalability and

speed. As compare to BigFIM, Dist-Eclat provided less

speed and scalability. Big FIM solved the issue of Dist-Eclat

essentially, storing of sub trees needs to the whole

database into main memory management, and the whole

data set requires expected contact to the number of

mappers. BigFIM was a combination of all methods which

usage algorithm of Apriori algorithm for creating k-FIs. The

algorithm of the Eclat was applicable for to detect frequent

item sets. Another item set of the candidate item sets did

not fit in memory space of greater depth is the restriction

of using Apriori algorithm for creating k-frequent item sets

in the algorithm of a BigFIM algorithm and also their speed

was very slow down.

Zhou et al. [6] Data partition was a significant task

in distributed and parallel computing, when the data set is

deals with huge scope, and then it converts in more

essential. Here proposed the algorithm of balanced parallel

FP-Growth, that progresses algorithm of the original

parallel frequent pattern that balancing the load of parallel

FP-Growth phase. Experimental outcome presented that

the strategy of balanced grouping was comparatively

decent grouping strategy. In another stage, to elaborate the

NOVATEUR PUBLICATIONS
International Journal of Research Publications in Engineering and Technology [IJRPET]

ISSN: 2454-7875
VOLUME 3, ISSUE 3, March-2017

89 | P a g e

exactness of the strategy of balanced grouping earning

more features in deliberation.

Riondato et al. [7] proposed (PARMA algorithm)

Parallel Randomized Algorithm was found a set of frequent

item sets in the minimum amount of time using sampling

method. Parallel Randomized Algorithm store association

rules and frequent patterns from accurate data. Outcome

of the stored frequent item sets was approximate, which

was closer to the initial outcome. It founded that the

sampling list using the algorithm of the k-means clustering

algorithm. The sample list is similar to clusters. The benefit

of PARMA algorithm is that it reduces data repetition, data

replication and algorithm execution is also faster.

Liao et al. [8], proposed an MR Pre Post algorithm

which was depended on MapReduce structure. MRPrePost

was an enhanced design of Pre Post. Performance of the

Pre Post algorithm was upgraded the prefix pattern. On the

basis of PrePost, the algorithm of the MR Pre Post was

suitable for association rules of huge mining data. In case

of the algorithm of MRPrePost was higher to Pre Post and

PFP. The scalability, stability of the algorithm MRPrePost

was better than PrePost and PFP. The mining outcome of

MR Pre Post was approximately nearer to the original

outcome.

III. PROPOSED SYSTEM:

A. SYSTEM OVERVIEW:

The following figure1 shows proposed system

architecture i.e. Fidoop-HD in Hadoop platform, in which

Data Owner upload video and user download this video in

minimal amount of time

Fig. 1. System Architecture

In Proposed System a new data partitioning

method to well balance computing load among the cluster

nodes; we develop FiDoop - FIM, an extension of FiDoop, to

meet the needs of high dimensional data processing. We

have addressed the data-placement issue in heterogeneous

Hadoop clusters, where data are placed across nodes in a

way that each node has a balanced data processing load.

Our data placement scheme is conducive to balancing the

amount of data stored in each heterogeneous node to

achieve improved data-processing performance. We will

integrate FiDoop with the data-placement mechanism on

heterogeneous clusters. One of the goals is to investigate

the impact of heterogeneous data placement strategy on

Hadoop-based parallel mining of frequent item sets.

PSEUDO CODE FOR PROPOSED SYSTEM:

ALGORITHM 1 RECOMMENDED ITEM SET:

Input: k file , k file(2 ≤ k ≤ M) is used to store the frequent

k-itemsets generated in the second MapReduce;

Output: Recommended itemset

Pseudocode:

1. Call for function ParallelCounting(key k, values k- file)

2. for all (k is from M to 2) do

3. for all (k-itemset in k- file) do

4. call for function decompose(k-itemset, k-1, (k-1)

itemsets); /*Each k-itemset is only decomposed into (k-1)-

itemsets */

5. (k-1)-file ← the decomposed (k-1)-itemsets union the

original (k-1)-itemsets in (k-1)-file;

6. for all (t-itemset in (k-1)-file) do,

7. Call for function Download itemset(t-itemset);

8. end for

9. end for

10. end for

11. end function

ALGORITHM 2 FUNCTION PARALLEL COUNTING:

Input: minsupport, DBi;

Output: 1-itemsets;

Pseudocode:

1. function MAP(key offset, values DBi)

2. /*T is the transaction in DBi */

3. for all T do

4. items split each T;

5. for all item in items do

6. output(item, 1);

7. end for

8. end for

9. end function

10. reduce input: (item,1)

11. function REDUCE(key item, values 1)

12. initialize sum equal to 0

13. for all item do

14. increment the sum value

15. end for

16. output(1-itemset, sum); /*item is stored as 1-itemset_n

17. if sum ≥ minsupport then

18. F – list ← the (1-itemset, sum) /*F-list is a CacheFile

storing */

19. end if

20. end function

ALGORITHM 3 FUNCTION DECOMPOSE:

Input: to be decomposed string s;

NOVATEUR PUBLICATIONS
International Journal of Research Publications in Engineering and Technology [IJRPET]

ISSN: 2454-7875
VOLUME 3, ISSUE 3, March-2017

90 | P a g e

Output: the decomposed results l;

Pseudocode:

1. function DECOMPOSE(s, l, de-result)

2. /*s is the string to be decomposed, l is the length of the

itemset required to be decomposed, de-result stores the

results.*/

3. for all (i is from l to s.length) do

4. decompose(s, i, result, resultend);

5. de-result i+resultend;

6. end for

7. end function

8. function DECOMPOSE(s, m, result, resultend)

9. if (m == 0) then

10. resultend.addAll(result); //resultend is a list storing all

the i-itemset

11. return;

12. end if

13. if (s is not null) then

14. result.add(s[0]+null);

15. for all (j is from the second value to the last value of s)

do

16. s1[j-1] s[j];

17. end for

18. decompose(s1, m - 1, result, resultend); //when

selecting the _rst item

19. result.remove(result.size() - 1);

20. desompose(s1, m, result, resultend); //when the first

item is not selected

21. end if

22. end function

ALGORITHM 4 FUNCTION DOWNLOAD ITEMSET:

Input: t-itemset;

Output: download itemset

Pseudocode:

1. apply Mapper

2. if (uservalue.equal(low)) do,

3. foreach (read(Bytes i)) do,

4. compress(bytes i);

5. return bytes;

6. end for

7. else

8. return Bytes;

9. end if

10. apply Reducer

11. write(Bytes B);

B. ALGORITHM STEPS:

 User want to download video. User has to make the

login into his account. After login the user sends

request to admin.

 Admin uploads the requested video on DFS location.

 Now the user can search the video in the search engine

and the user will get only the requested video on his

system.

 Once the user clicks on the video link he will be able to

download the video within seconds and the

recommendation section of Fidoop will contain all the

previously uploaded file.

 The log file will contain all the records of files that the

user has downloaded using Fidoop.

 Reducer file stores the record of how many times the

user has downloaded a file.

 In prior techniques such as pfp, Fidoop and Fidoop-HD

the execution time was considerably increasing when

the number of records increased, compare to which in

our proposed system FIM-Fidoop based on FIM

algorithm highly reduces the execution speed of

downloading as the number of records increases in

size.

IV. EXPERIMENTAL RESULT:

Fig. 2. Show the number of records comparison in

proposed system and existing system. It can be seen that

the proposed system takes less time as compared to the

existing system.

V. CONCLUSION AND FUTURE SCOPE:

MapReduce programming system is concern for

current mining algorithm for frequent item sets from the

database and solves the scalability and load balancing

issue. This paper gives the overview of the algorithms

designed for parallel mining of frequent item sets. The FIM

and MapReduce algorithm were used for mining frequent

item sets. The disadvantage of Frequent Pattern growth

though deceits within the insuperable to create in-memory

Frequent Patterns trees to put up huge scalable databases.

This problem comes to be numerous noticeable comes

after from two-dimensional databases or large database.

To solve these issue, FiDoop system developed a parallel

frequent item set mining algorithm. FiDoop includes

Frequent Pattern growth and FIUT algorithm. The FIUT

reaches flattened storage. FiDoop executes multiple

NOVATEUR PUBLICATIONS
International Journal of Research Publications in Engineering and Technology [IJRPET]

ISSN: 2454-7875
VOLUME 3, ISSUE 3, March-2017

91 | P a g e

MapReduce tasks of which final MapReduce task is

important. In that the mapper independently decomposes

item sets and reducer built the ultra-metric trees. As

compare to pfp, Fidoop and Fidoop-HD an extension of

Fidoop the proposed system is an advance technique of

Fidoop-FIM which uses FIM algorithm to highly reduce the

execution speed of downloading as the number of records

increases in size.

 In future work we invent the algorithm which is

very useful to process the big data using Fidoop-FIM and it

also improves the efficiency existing hadoop. By

considering users review as an important aspect, working

of implemented system can be improved.

ACKNOWLEDGMENT:

This paper would not have been come into reality

without the able guidance, support and wishes of all those

who stand by me in the development. I wish to give my

special thanks to my guide, Prof. Ekta Ukey, for her timely

advice and guidance.

REFERENCES:

1) Yaling Xun, Jifu Zhang, and Xiao Qin, “FiDoop: Parallel

Mining of Frequent Itemsets Using MapReduce”, 2 IEEE

TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS: SYSTEMS 2015.

2) Basheer Mohamad Al-Maqaleh and Saleem Khalid

Shaab,” An Efficient Algorithm for Mining Association

Rules using Confident Frequent Itemsets,” 2012 Third

International Conference on Advanced Computing &

Communication Technologies.

3) Yubo Jia, Guanghu Xia, Hongdan Fan, Qian Zhang and

Xu Li, “An Improved Apriori Algorithm Based on

Association Analysis,” ICNDC 2012, 3rd IEEE

International Conference, pp208-211.

4) Rui Chang and Zhiyi Liu , “ An Improved Apriori

Algorithm,” ICEOE 2011, IEEE International

Conference, vol. 1, pp v1- 476 -v1-478.

5) Moens S , Aksehirli E , Goethals B , ―Frequent Itemset

Mining for Big Data,‖ Big Data, 2013 IEEE

International Conference on , vol., no., pp.111,118, 6-9

Oct. 2013 DOI: 10.1109 / Big Data. 2013.6691742.

6) L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S. Feng.

―Balanced parallel FP Growth with MapReduce‖. In

Proc.YC-ICT, pages 243–246, 2010.

7) Riondato, J. A. DeBrabant, R. Fonseca, and E. Upfal.

―PARMA: a parallel randomized algorithm for

approximate association rules mining in MapReduce‖.

In Proc. CIKM, pages 85–94. ACM, 2012.

8) Jinggui Liao, Yuelong Zhao, and Saiqin

Long,―MRPrePost- A Parallel algorithm adapted for

mining big data,‖ IEEE Workshop on Electronics,

Computer and Applications, 2014.

	I. INTRODUCTION:
	II. RELATED WORK:
	III. PROPOSED SYSTEM:
	A. SYSTEM OVERVIEW:
	B. ALGORITHM STEPS:

	IV. EXPERIMENTAL RESULT:
	V. CONCLUSION AND FUTURE SCOPE:
	ACKNOWLEDGMENT:
	REFERENCES:

