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ABSTRACT:  

The article formulates a generalized 

model of an elastic-viscous fluid, in 

particular, from this model one can obtain 

Newtonian, generalized Newtonian, 

Maxwellka and other models. Basically, the 

generalized model of a viscoelastic fluid is 

built on the basis of the topological 

hypothesis of Astarit and Marrucci and the 

axiomatic principles of Truesdell and Knoll. 

The developed generalized model of a 

viscoelastic fluid is convenient for solving 

engineering problems and thus is easily 

implemented for studying the flow of non-

Newtonian fluids in a flat channel and in a 

circular cylindrical tube. 

KEYWORDS: Elastic, viscous, Newton's 

model, Maxwell's model, axiom, flat 

channel, cylindrical tube. 

 

INTRODUCTION: 

Most fluids have the property of 

elasticity, which makes up the mechanical 

memory. In solids, this memory is determined 

relative to the initial deformation. In fluids, 

however, there is no concept of initial 

deformation. That is why in liquids it is studied 

to "remember" the preservation of the previous 

deformation in relation to the state of a 

moment in time. This in turn greatly 

complicates the construction of the rheological 

equation from a phenomenological point of 

view in finitely deformable elastic viscous 

fluids. In general, the concept of "memory" in 

liquids is characterized by the fact that the 

deformation of the environment creates a 

relaxation process. Therefore, in elastic viscous 

liquids, their elastic properties are reflected in 

the notarial flow more than in other liquids. In 

stationary flow, the elastic property does not 

affect the flow. In this case, the elastic viscous 

liquids are converted into Newtonian liquids, 

i.e., viscous liquids. In elastic viscous fluids, 

depending on the type of fluid, the "hereditary 

factor" can be significantly expressed in these 

fluids, if the length of the "memory" 

corresponds to the length of the relaxation 

process, recalls the area and other 

hydrodynamic characteristics. Basically, the 

"hereditary" factor is determined by the 

number of Deborah. This number is 

characterized by the ratio of the time of the 

relaxation process to the time characterizing 

the main hydrodynamic phenomena, ie: 
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 where   is the relaxation time; T is 

the time characterizing the hydrodynamic 

phenomena. Typically, this ratio can be from 
210

to 
210 seconds for high-molecular 

substances, including colloids, dispersion 

biological substances (elastic viscous liquids) 

[20]. The motion of elastic viscous fluids is 

fundamentally different from the motion of 

fluids that do not have elastic properties. In the 

development of the motion of elastic adhesive 

(polymer) fluids under the influence of a 

pressure gradient, the longitudinal velocity 

profile is not monotonous like a Newtonian 

fluid, but rises sharply at the beginning, then 

decreases after reaching a maximum value, 

oscillates around a steady-state amplitude 

does. In elastic viscous fluids as a result of 

cessation of impact force, deformation causes a 

unloading process. For example, in a polymer 

liquid flowing in a pipe, it can be observed that 

as a result of removing the pressure gradient or 

equalizing it to zero, a reverse flow is formed in 

the direction opposite to the main flow 

direction of the liquid. In this regard, it is 

important to study the movement of elastic 

adhesive (polymer) fluids in pipes. To date, 

rheological models of elastic viscous fluids 

have been proposed by many scientists for 

different models of fluids of different types [1- 

26]. However, among the models proposed so 

far, there is no single universal model that 

generalizes all models [2, 20]. Therefore, the 

theoretical study of convective migration 

processes of elastic viscous fluids is becoming a 

complex process. Among the proposed models, 

we can say that the model, which generalizes 

the models in a certain sense, is determined by 

the following nonlinear integral equation [2, 

20,21]: 

       1( ), 1
2 2
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D t tT m t t S t C t E C t E dt
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 tCt  - Koshi tensor;  tCt 1

- Finger tensor; 

E - unit tensor. 

The general-view elastic viscous fluid model 

given above (1) includes many models of 

polymer fluids and other elastic viscous fluids. 

Basically, the difference between these models 

is in the assignment of functions  ( )
k D

f S t

and  ( )
k D

g S t , which are part of the integral 

equation (1). Especially in small deformations 

1 kk gf  , in which case the model of 

elastic viscous fluids becomes linear. In 

numerical accounting, k and k are 

quantities, in particular 

 
,k k

k k 

 
 

 
   

taken in the form of, where   is the dynamic 

viscosity coefficient of the Newtonian fluid in 

the initial state;   –  relaxation time,   – a 

number that characterizes the spectrum of 

relaxation time distribution;
 

    –  Riman 

zeta function. 

 

It is determined by the 

expression in the form  
1

1

k k
 





 . The 

fact that the integral equation in the form of an 

elastic viscous fluid (1) is equivalent to the 

differential equation in this form is given in the 

research work of Z.P.Shulman and B.M.Husid 

[20]: 
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where the high convective product is through 

this expression 

   
   

11
1 1Tk

k kk

DT
T V V T

Dt
T


    
 

the lower convective product is defined by the 

following expression 
   

   
2 2

2 2Tk
k kk

DT
T V V T

Dt
T


    
 

Yaumann's product is defined as follows 

DA A
V A WA AW

Dt t


    
  

 Where 

   
1 1

, , ;
2 2
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  –is introduced as a parameter representing 

the second normal voltage difference other 

than zero, which is determined by the following 

formula 2

1
2

 



. Where

2 2

1 11 22 2 22 33
( ) / , ( ) /          

. 

It should be noted that the upper convective 

product, the lower convective product, and the 

Yaumann product are obtained in the arbitrary 

coordinate system, which are transformed into 

ordinary products in the orthogonal system 

Cartesian and cylindrical coordinate systems. 

Three types of rheological models of this type 

are widely used in practice for numerical 

calculations in specific cases: 

1. Meyster (M) model 

 1, 1 / 2 ;
k k k D

f g c S  
   

2. Berd-Carro (BK) model 

 2 21 1 , 1;
k k D k

f S g  
 

3.McDonald-Baird-Carro(MBK) model 
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where  
1 , 0 1k kx x   

 

for all three models: 
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 Where 
2 2(2 2 ) 3c     ; in some cases it 

is taken as 
1 0,2  .  If 

1  , then the 

McDonald-Bird-Carro model corresponds to 

the Meister model;
 1,2,...,k     

The Meyster model here takes into account the 

relaxation time effect of the deformation rate. 

In the BK model, the deformation rate is related 

to the shear model, while in the MBK model, it 

is a generalized model that takes into account 

changes in relaxation time, as well as the shear 

model. The formulas for determining the 

coefficient of dynamic viscosity in a stationary 

shear are determined in the following form 

with respect to the Weisenberg number: 
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   (3) 

Where   –is the shear deformation velocity or 

velocity gradient; 

    – Newtonian coefficient of adhesion 

depending on the rate of deformation. 

At a small value of the shear rate, i.e.
 

1  , 

when 1, 1
k k

f g   is sought, the 

model under consideration is the same as the 

spectrum of relaxation time. When 0We , the 

coefficient of adhesion of the three states in 

formula (3) above is equal to ( )
( )

k
k


 

 


. However, it is not possible to derive a viscous 

plastic fluid model from this model in a special 
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way, because in the hydrostatic (quiescent) 

state the maxwell fluid cannot maintain the 

noisotropic stress state indefinitely. That is, 

with a change in voltage, of course, fluid motion 

or deformation occurs. Therefore, the 

nonstationary state of plastic fluids cannot be 

expressed by a generalized elastic adhesive 

model. The above model can be applied to the 

fluid flow when the velocity gradient 
10,1сек  is present. However, plasticity 

properties can occur in non-Newtonian fluids 

when 
10,1сек   accept small values. The 

creation of a generalized model of such liquids 

is carried out by conducting separate scientific 

research. We can cite this in our next research 

work. Specifically from the model proposed 

above, it is possible to derive the Newtonian 

model for the viscous fluid and the Maxwell 

models for the viscous elastic fluid. 

If 0k  , then the equation corresponding to 

the Newtonian model is derived from the 

system of equations (2). In fact, being 

lim( 0)k k kp    , equation (2) becomes 

a Newtonian equation in one-dimensional 

space. That is 
u

T
y







, which is the 

Newtonian mod.  By performing the same 

steps, it is possible to form an equation 

corresponding to the Maxwell model when 

  is attempted (2) from the system of 

equations 1 1, 1
k k

f g    and 

when k
k

k

p



 is satisfied. In conclusion, it can 

be said that the system of equations in the form 

(2) is a generalized model of elastic viscous 

fluids in a certain sense. 
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