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ABSTRACT: 

The proper function of photovoltaic (PV) systems 

needs the design of an maximum power point tracking 

system (MPPT) to draw out the maximum possible 

power from the photovoltaic array. This paper 

investigates the efficiency of a neuro-fuzzy logic 

controller over conventional ones intended to track 

the maximum power point (MPP). The proposed model 

used for simulation studies is implemented using 

Matlab/Simulink. A comparison between the classical 

Perturb and Observe (P&O) algorithm and fuzzy 

algorithm in terms of MPPT accuracy is provided. 

Results prove that the proposed model is simple, 

reliable and allows simulation under different 

operating conditions. 

KEYWORDS: photovoltaic; modeling; simulation; 

neuro-fuzzy logic; MPPT. 

 

I.  INTRODUCTION: 

 Solar output power of PV systems is generally 

influenced by atmospheric factors like variable 

temperature and solar irradiation. Different control 

techniques could be used on get rid of the miss functioning: 

controlling the input to the PV array and controlling the 

power output from the PV array.  The combinations of these 

two may also be considered for maintaining constant 

output power at load [1]. The irradiance dependent input to 

the PV systems is controlled in order to be kept as high as 

possible, no matter the changes in weather conditions. Due 

to nonlinear I-V and P-V characteristics of the PV array, the 

MPPT becomes more challenging. Such non-linear and non-

minimum phase characteristics further confuse the MPPT 

of the boost converter [5]. To overcome these problems, 

different conventional and intelligent MPPT algorithms 

have been proposed such as Incremental Conductance (IC) 

[6–8], Open Circuit Voltage (OCV) [9], Short Circuit Current 

(SCC) [10], Perturb and Observe (P&O) [11], fuzzy logic 

[12–15], feedback linearization [16], neural network [17–

22], neuro-fuzzy [23–25] and sliding mode [26,27]. 

Nevertheless, there still remains the concern of fast and 

accurately determining the locus of the MPP during high 

weather variations and external load changes occurring. 

The fuzzy logic control is selected as it is effective and 

versatile, robust and flexible, without including control 

algorithms methods that may not be appropriate for 

realistic implementations. It creates use of a thinking that is 

neither actual nor definitely inexact, but only to a certain 

level actual or inexact. The controller design is simple, 

mainly consisting of the conversion of a linguistic rules set 

into an automatic control algorithm. It does not require 

precise data, its reasoning schemes being based on 

uncertain or imprecise information. The output control is a 

smooth control function despite a variety of input 

variations. The fuzzy logic controller processes user defined 

rules that can be easily modified, to improve the system 

performance [2-5]. 

Moreover, both Fuzzy Logic (FL) and Neural Network 

(NN) controls have been preferred for the MPPT of the PV 

system over the last several years. The FL MPPT controller 

is one of the most promising control schemes for the 

unpredictable PV system, but it requires a priori knowledge 

of the system input/output relationship [28]. Similarly, the 

NN enhances the efficiency of the system by adopting a 

multilayer structure; though, each kind of PV array has to 

be periodically trained to formulate the control rules; 

therefore, its limitation is versatility [29]. The shortcomings 

of NN and FL are overwhelmed by hybridizing NN and FL in 

the Neuro-Fuzzy Controller (NFC) [24,30–32]. NFC 

combines the explicit knowledge of FC, which is understood 

with the implicit knowledge of NN, which is acquired by 

learning. The hybrid neuro-fuzzy is becoming the most 

preferred choice for tracking the MPP of PV over the last 

few decades. Nevertheless, the neuro-fuzzy system have 

problems of getting trapped in local minima of the search 

space and low convergence speed [33]. In recent years, 

several researchers have developed different techniques for 

solving the local minima problem in the neuro-fuzzy system 

In this work, a high performance neuro-fuzzy MPPT control 

method is proposed. A five-layer based neuro fuzzy control 

is made to monitor the MPP of the PV system. The 

information extracted from the fuzzy control is used to 

initialize the factors of the suggested framework or 

proposed structure. An on-line learning algorithm based on 

the embedded Neural Fuzzy (NF) gradient-decent-based 

back-propagation algorithm is derived to update the 

parameters of the proposed structure adaptively. 

Compared with the conventional and intelligent MPPT 

algorithms, such as PID-based P&O, the proposed MPPT 
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controller over performs in terms of efficiency, power 

quality and MPP error. The paper is structured as follows: 

Section 2 focuses on the PV system. Section 3 presents the 

proposed controller design. Section 4 describes the 

performance of the proposed solution using detailed 

simulations, followed by the conclusion in Section 5. 

 

II. MPPT CONTROL: 

A successful MPPT-PV system design must take into 

consideration a few requirements. Stability is the most 

fundamental design requirement of a dynamic control 

system. In PV power systems, the switching mode 

converters are nonlinear systems and the output 

characteristics of solar array are also nonlinear. Therefore, 

stability is a critical factor to evaluate a PV MPPT control 

systems dealing with non-linearity. Besides this, in MPPT 

control systems, a good dynamic response is desirable for 

the fast tracking requirement. A good MPPT control 

algorithm needs to respond quickly to rapidly changing 

atmospheric conditions like temperature and illumination 

and track the maximum power points quickly. It is also 

important to design a MPPT control system robust to any 

kind of disturbances. The disturbances can arise from 

various sources, one of the most common problems is that 

the PV modules manufactured by different technologies 

respond differently to the changes in solar insolation and 

cell temperature and this can cause the MPPT system to 

become inefficient. The basic layout of the photovoltaic 

system proposed includes a PV panel, a boost converter, a 

MPPT controller and a storage device (Fig. 1). The MPPT 

control is performed using two different methods. 

 

A. P&O ALGORITHM: 

First the P&O algorithm is used. P&O is the most 

common algorithm because of its ease of implementation, 

despite its drawbacks such as slow response speed, 

oscillation around the MPP in steady state, and even 

tracking in wrong way under rapidly changing atmospheric 

conditions [6], [7]. Although it is known it does not provide 

the best results in all situations, it is mainly used to test the 

MPPT controller functionality in the PV system.  The 

algorithm operates by periodically perturbing the control 

variable and comparing the instantaneous PV output power 

after perturbation with that before. Thus, the direction of 

the next perturbation that should be used is determined [6-

9]. If the change in power ΔP > 0, the direction of the next 

perturbation keeps the same algebraic sign. That should 

place the operation point closer to MPP. If ΔP < 0, the 

algebraic sign of the perturbation should be reversed. 

 
Figure 1.  Photovoltaic system with fuzzy logic/ P&O control for MPPT. 

 

B. FUZZY LOGIC BASED ALGORITHM: 

The second method of tracking the MPP is based on the 

fuzzy logic. The MPPT controller is generally composed of 

three main units: the fuzzification, the rule base and the 

defuzzification (Fig. 2) [10], [11]. 

Fuzzyfication Inference Defuzzyfication

Rule base

Inputs Output

 
Figure 2.  Block scheme of a fuzzy controller. 

FUZZIFICATION: 

The fuzzification involves conversion of digital data in 

linguistic data. There are two inputs of the fuzzy logic 

controller - P and E. P is the power generated by the solar 

panel and E denotes the error at k-th time sample, defined 

as E(k)=P(k)-P(k-1). The inputs P and E are converted to 

fuzzy membership values on the fuzzy subsets (Figure 3 (a) 

and (b)). Seven membership functions are used for the 

input Negative Big (NB), Negative Medium (NM), Negative 

Small (NS), Zero (Z), Positive Small (PS), Positive Medium 

(PM) and Positive Big (PB). The E input is coded using three 

membership functions expressed as linguistic variables 

denoted Negative - NEG, Zero - Z, Positive – POZ. The input 
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variables are fuzzified by using trapezoidal MFs for P and 

triangular for E. 

INFERENCE: 

The second step is the inference, where the fuzzified 

variables are compared with predefined sets in order to get 

the appropriate response. It is responsible of the 

interpretation of the rules using information collected in 

the knowledge base to compute the fuzzy set output. 

The fuzzy rules set are a collection of expert control 

knowledge allowing the fuzzy control objectives 

achievements. The control rules base is set up using IF-

THEN rules, based on expert experience and engineering 

knowledge. Inference fuzzy rules for the PV system include 

13 fuzzy control rules.  

Mamdani fuzzy inference method is used with Max-Min 

operation fuzzy combination. This method implies the 

output membership function to be fuzzy sets. After the 

aggregation process, there is a fuzzy set for every output 

variable, leading to the necessity of a defuzzification.  The 

operations used in the inference process are: And method is 

min; Or method is max; Implication is min; Aggregation is 

max. 

 

 DEFUZZIFICATION: 

Defuzzification of the inference engine evaluates the 

rules based on a set of control actions for a given fuzzy 

inputs set. This operation converts the inferred fuzzy 

control action into a numerical value at the output by 

forming the “union” of the outputs resulting from each rule. 

In other words, the deffuzification plays the role of a 

linguistic-to-numerical data converter. The center of area 

(COA) algorithm is used for defuzzification of output 

control parameter Iref. The duty cycle of the boost 

converter is adjusted thought Iref such that the system 

operates at the maximum power point. The coding of the 

membership functions for the otput Iref is identical to that 

of the input P: Negative Big (NB), Negative Medium (NM), 

Negative Small (NS), Zero (Z), Positive Small (PS), Positive 

Medium (PM) and Positive Big (PB). In Table 1 it is 

summarized the different fuzzy rules used in the fuzzy 

controller to track the maximum power point. 

Tabel 1 Fuzzy rules 
P 

E 

NB NM NS Z PS PM PB 

NEG NB NB NM Z PS PM PB 

Z NB NM NS PS PS PM PB 

POZ NM NM Z PS PS PB PB 

Every rule of the rule base of the fuzzy logic system 

establishes a fuzzy relation between the input fuzzy sets 

and the output fuzzy set Iref. There are 13 rules in the 

system rule base that make up the control strategy. The 13 

rules are presented to the end-user in if-then format like 

the one below: 

R1: If  P is NB and E is NEG then Iref is NB; 

R2: If P is NB and E is Z then Iref  is NB; 

R3: If P is NB and E is POZ then Iref is NM; etc. 

Figure 4 shows the membership functions of input and 

output variables. On the ox axis the universe of discourse is 

represented, while on oy axis there is the membership 

grade taking values between 0 and 1. 

 
Figure 3.  Graphical construction of the control 

signal in the MPPT controller (generated in the Matlab 

Fuzzy Logic Toolbox). 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.  Membership functions for: (a) input P, (b) 

input , c) output Iref. 

Figure 3 represents the graphical construction of the 

algorithm in the core of the controller. Each of the thirteen 

rows refers to one rule. With two inputs and one output 

the input-output mapping is a surface. Figure 5 is a mesh 

plot of the relationship between P and E on the input side, 

and controller output Iref on the output side. The plot 

results from the rule base with thirteen rules previously 

presented. The surface is more or less regular. The 

horizontal plateaus are due to flat peaks on the input sets. 
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Figure 5.  Control surface 

 

C. NEURAL NETWORK BASED CONTROL: 

 

 

 

 

 

 

 

 

 

Figure 6.  Fully connected neural network structure 

 

The computation of neural control is based on 

fully connected neural network structure, which is 

consists of an input layer with two neurons (n), one 

hidden layer with four neurons (h) and a single neuron in 

output layer (m). The structure of NN presented in 

control configuration as depicted in Fig. 5 with x is the n × 

1 input vector and y is a m × 1 diagonal vector. Here, ω 

and ϑ denotes the input-to-hidden layer and hidden -to-

output layer weights respectively in feed forward NN 

structure. The essence of Back propagation learning 

algorithm is the recurring application of the sequence 

concept to estimate the impact of each weight in the 

network with respect to an arbitrary error function E: 

 

(1)i i

ij i i ij

a netE E

w a net w

  


   
  

Where 

  wij = weight from neuron j to neuron i. 

  ai = activation value. 

  Neti = weighted sum of the inputs of neuron i. 

Once the partial derivative of each weight is known, the aim 

of reducing the error function is achieved by performing a 

simple gradient descent: 
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Where, η and η* = learning rate.  

Learning rate parameter is selected by the user and, as it 

can be deduced from equation (2), it plays an important 

role in the convergence of the network in terms of success 

and speed. For our experiments the most commonly used 

parameters are selected. The inspection of advanced 

possibilities related to neural network learning procedures 

confirms a broad field of investigation and could be, 

therefore, a point of further experimentation. In the back 

reproduction learning algorithm online training is usually 

considerably quicker than batch training, especially in the 

case of large training sets with many similar training 

illustrations. On the other hand, results of the training with 

back propagation and update after every pattern 

presentation, heavily depend on a proper choice of the 

parameter η. The back propagation weight update rule, also 

called generalized delta-rule, for the NN software reads as 

follows:  
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Where  

η = learning factor (a constant). 

δj = Error  

oi = output of the preceding unit i. 

tj = teaching input of unit j. 

i = index of a predecessor to the current unit j with link 

wij  

       j = index of the current unit. 

The output signal from neural network structure is 

employed for improving tracking response of MPPT. 

 

III. SIMULATION RESULTS: 

          In this section, the solar system implemented in 

Matlab/Simulink is evaluated. Two MPPT methods are 

studied by simulation: the Neuro-Fuzzy and the P&O. Two 

situations are simulated. The first test is when the solar 

irradiation is kept constant. The standard conditions are 

considered: the temperature = 25°C and the solar 

irradiation level = 1000W/m2. In the second case the 

system behavior is evaluated when solar illumination 

change takes place and the temperature is kept constant. 
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The purpose of these simulations is to observe the time 

response and accuracy in terms of tracking the MPPT. For 

building the prototype 10W PV module is used considering 

the hardware development cost. The PV module has 

specification: solar panel power 10 W, open circuit voltage 

(Voc) 21.65 V, short circuit current (Isc) 0.69A, rated 

voltage 17.85 V, rated current 0.65 A. Figure 7 and 8 shows 

I-V Characteristics and P-V characteristics of 10W PV 

Module with constant radiation and varying solar radiation 

respectively.  Figure 9 and 10 shows tracking of MPP at 

solar radiation 400 W/m2 and 700 W/m2 with change in 

external temperature. The tracking response is enhanced 

due to neural network structure with back propagation 

algorithm. 

 
Figure 7.  I-V Characteristics of 10W PV Module 

 
Figure 8.  P-V Characteristics of 10W PV 

Module 

 
Figure11. Tracking of MPP at 700 W/m2 & changing 

temperature condition 

 
Figure 9.  Tracking of MPP at 400 W/m2 & 

changing temperature conditions 

 
Figure 10.  Tracking of MPP at 700 W/m2 & 

changing temperature condition 

 
Figure12. Tracking of MPP at 700 W/m2 & changing 

temperature condition 

 
 

Figure13. Tracking of MPP at 700 W/m2 & changing 

temperature condition 
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Figure 11, 12, 13 shows tracking responce of power 

based on neuro fuzzy, fuzzy logic & P and O methode 

respectively. The comparative analysis illustrate that, P and 

O methode gives Oscillatory response, which can be smooth 

with the help of fuzzy logic concept. But in case of fuzzy, 

desired power point tracking is not possible so that, Neural 

network combined in parallel with fuzzy logic controller. 

 

IV. CONCLUSION: 

In this work, an intelligent neuro-fuzzy direct method 

with high adaptive capability is designed for the MPPT of a 

PV system. A five-layer NFC is adopted as the process 

feedback controller. The proposed control is initialized 

from the traditional fuzzy control by means of expert 

knowledge, which decreases the weight of the lengthy pre-

learning. With a produced learning plan, the factors are 

modified in the proposed structure adaptively by 

monitoring and modifying the tracking error. The simulator 

results show that the Neuro-fuzzy control algorithm 

considerably enhances the performance during the tracking 

phase as compared to a conventional algorithm of the 

maximum power point tracking (MPPT) in photovoltaic 

power systems. It provides fast response times and stability 

for changing environmental conditions. Stability and 

robustness is proven even in the case of a luminosity 

variation. 
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