CERTAIN CLASSES OF UNIVALENT FUNCTIONS DEFINED BY RUSCHEWEYH OPERATOR WITH SOME MISSING COEFFICIENT

RAHULKUMAR DIPAKKUMAR KATKADE

Dr. D.Y.Patil School of Engineering, Charholi (Bk), Lohegaon,Pune – 412105, India.

Email: Rkdkatkade@gmail.com

ABSTRACT:

In this paper, we introduce the class $O_n(\alpha,\beta,\gamma,\xi)$ by

using the Ruscheweyh Operator. The aim of this paper is to study some properties of this class,like, coefficient inequality, Hadamard products, Extreme points, radius of starlikeness and convexity, closure theorem of a class of analytic and univalent function in the unit disc. The results obtained here are found to be sharp.

KEY WORDS: Analytic functions, Univalent functions, Hadamard product, Starlike functions, Rescheweyh operator.

1. INTRODUCTIONS:

Let S denote the class of function

 $f(z) = z + \sum_{k=2}^{\infty} a_{2k} z^{2k}$ which are analytic and univalent

in the unit disc

$$U = \{z : |z| < 1\}$$
. For $g(z) = z + \sum_{k=2}^{\infty} b_{2k} z^{2k}$ t

convolution or Hadamard product of f(z) and g(z) is

defined by
$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_{2k} b_{2k} z^{2k}, z \in U$$

Let
$$D^n f(z)$$
 denote the n^{th} order derivative introduced
by Buscheweyh [6]

The Ruscheweyh derivative is defined as

follows: $D^n: S \to S$ such that

$$D^{n} f(z) = \frac{z}{(1-z)^{n+1}} * f(z), \quad n > -1$$

= $\frac{z(z^{n-4} f(z))^{n}}{n!}, n \in N_{0} = 0, 1, 2...$
= $z + \sum_{k=2}^{\infty} a_{2k} \partial(n, k) z^{2k}$, Where
 $\partial(n, k) = \binom{n+k-1}{n}.$

Notice that, $\frac{z}{(1-z)^{n+1}} = z + \sum_{k=2}^{\infty} \partial(n,k) z^{2k}$, where n > -1 and $D^0 f(z) = f(z), D'f(z) = zf'(z)$. We aim to study the class $O_{\alpha}(\alpha, \beta, \gamma, \xi)$ which consists of functions $f \in S$ and satisfy $\overline{z\xi((D^n f(z))' - 1) + \{z(D^n f(z))' - D^n f(z)\} + (\alpha - \beta)}$ $<\gamma$, for $0 \le \xi < 1, 0 < \alpha \le 1, 0 \le \beta < 1, 0 < \gamma < 1, n \in \Lambda$ The investigation here is motivated by M.Darus [1]. Next we characterize the class $O_{\alpha}(\alpha, \beta, \gamma, \xi)$ by proving the Coefficient Inequality. **1. COEFFICIENT INEQUALITY:** Theorem 1: Let $f \in S$. Then $f \in O_n(\alpha, \beta, \gamma, \xi)$ if and only if $\left[2k(1-\gamma\xi-\gamma)+\gamma\right]\partial(n,k)a_{2k}$ (1.1) $\leq \gamma(\alpha - \beta)$ for $0 \le \xi < 1, 0 < \alpha \le 1, 0 \le \beta < 1, 0 < \gamma < 1, n \in N_0$ $\partial(n,k) = \binom{n+k-1}{k}$

 $\binom{n}{1}$

The result
$$(1.1)$$
 is sharp for the function

$$f(z) = z + \frac{\gamma(\alpha - \beta)}{\left[2k\left(1 - \gamma\xi - \gamma\right) + \gamma\right]\partial(n, k)} z^{2k} , k \ge 2$$

NOVATEUR PUBLICATIONS International Journal of Research Publications in Engineering and Technology [IJRPET] ISSN: 2454-7875 VOLUME 3, ISSUE 6, Jun.-2017

Thus the proof is complete. **Proof:**Assume inequality (1.1) is true then **Corollary:** $z\xi(D^n f(z))' - 1) +$ $\left| z(D^n f(z))' - 1) \right| - \gamma \left| \left\{ z(D^n f(z))' - D^n f(z) \right\} \right|$ +(\alpha - \beta) If $f \in O_n(\alpha, \beta, \gamma, \xi)$ then $a_{2k} \le \frac{\gamma(\alpha - \beta)}{[2k(1 - \gamma\xi - \gamma) + \gamma]\partial(n, k)}, \quad k = 2, 3, \dots$ $\leq \left|\sum_{k=1}^{\infty} 2k \,\partial(n,k) a_{2k} z^{2k}\right|$ with equality for $f(z) = z + \frac{\gamma(\alpha - \beta)}{[2k(1 - \gamma\xi - \gamma) + \gamma]\partial(n, k)} z^{2k}, k = 2, 3, \dots$ $\xi \sum_{k=2}^{\infty} 2k \,\partial(n,k) a_{2k} z^{2k}$ **3. GROWTH AND DISTORTION THEOREM:** $\gamma \left| + \sum_{k=1}^{\infty} 2k \, \partial(n,k) a_{2k} z^{2k} \right|$ Theorem 2: If the function $f(z) \in O_n(\alpha, \beta, \gamma, \xi)$ then $\left|-\sum_{k=1}^{\infty}a_{2k}\partial(n,k)z^{2k}+(\alpha-\beta)\right|$ $|z| - \frac{\gamma(\alpha - \beta)}{[4(1 - \gamma\xi - \gamma) + \gamma]\partial(n, 2)} |z|^4$ $\leq \sum_{k=1}^{\infty} [2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)a_{2k}-\gamma(\alpha-\beta) \leq 0$ $\leq |f(z)| \leq |z| + \frac{\gamma(\alpha - \beta)}{[4(1 - \gamma\xi - \gamma) + \gamma]\partial(n/2)} |z|^4$ by maximum modulus principle, The result is sharp fo $\therefore f \in O_n(\alpha, \beta, \gamma, \xi).$ $f(z) = z + \frac{\gamma(\alpha - \beta)}{[4(1 - \gamma\xi - \gamma) + \gamma]\partial(n, 2)} z^4$ Conversely, Let $f \in O_n(\alpha, \beta, \gamma, \xi)$. Then $\frac{z(D^n f(z))' - 1)}{z\xi(D^n f(z))' - 1) + \{z(D^n f(z))' - D^n f(z)\} + (\alpha - \beta)}$ Proof: We ha $f(z) = z + \sum_{k=1}^{\infty} a_{2k} z$ $< \gamma, z \in U$ $|f(z)| \le |z| + \sum_{k=2}^{\infty} a_{2k} |z|^{2k}$ that is $|f(z)| \leq |z| + \frac{\gamma(\alpha - \beta)}{[4(1 - \gamma \xi - \gamma) + \gamma] \partial(n-2)} |z|^4$ $\frac{\left|\sum_{k=2}^{\infty} 2k \,\partial(n,k) \,a_{2k} z^{2k}\right|}{\left|\sum_{k=2}^{\infty} (2k\xi + 2k - 1) \,\partial(n,k) \,a_{2k} z^{2k} + (\alpha - \beta)\right|} < \gamma$ Similarly (1.2) $|f(z)| \ge |z| - \sum_{k=1}^{\infty} a_{2k} |z|^{2k}$ Using the fact that $|\operatorname{Re}(f(z))| \leq |f(z)|$ $\frac{\sum_{k=2}^{\infty} 2k \partial(n,k) a_{2k} z^{2k}}{\sum_{k=2}^{\infty} (2k\xi + 2k - 1) \partial(n,k) a_{2k} z^{2k} + (\alpha - \beta)} \bigg| \leq \gamma$ $\geq |z| - \frac{\gamma(\alpha - \beta)}{[4(1 - \gamma\xi - \gamma) + \gamma]\partial(n, 2)} |z|^4$ Combining (2.1) and (2.2) we get the result. Theorem 3[:] Choosing z on real axis and allowing $z \rightarrow 1-$ If the function $f(z) \in O_n(\alpha, \beta, \gamma, \xi)$ then $\frac{\sum_{k=2}^{\infty} 2k \partial(n,k) a_{2k}}{\sum_{k=2}^{\infty} (2k\xi + 2k - 1) \partial(n,k) a_{2k} + (\alpha - \beta)} < \gamma$ $1 - \frac{4\gamma(\alpha - \beta)}{[4(1 - \gamma\xi - \gamma) + \gamma]\partial(n, 2)} |z|^3 \le |f'(z)|$ $\leq 1 + \frac{4\gamma(\alpha - \beta)}{[4(1 - \gamma\xi - \gamma) + \gamma]\partial(n, 2)} |z|^3$ $\sum_{k=2}^{\infty} [2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)a_{2k}-\gamma(\alpha-\beta) \le 0$

The result is sharp for Theorem 5: If $O_n(\alpha, \beta, \gamma, \xi)$ then f(z) is convex of order c, $f(z) = z + \frac{\gamma(\alpha - \beta)}{[4(1 - \gamma\xi - \gamma) + \gamma]\partial(n, 2)} z^4$ $0 \le c < 1$ in |z| < R where $R = \inf_{k} \left\{ \frac{(1-c)[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{2k(2k-2+c)\gamma(\alpha-\beta)} \right\}^{\frac{1}{2k-1}},$ 4. RADIUS OF STARLIKENESS AND CONVEXITY: **Theorem 4:** Let $f(z) \in O_n(\alpha, \beta, \gamma, \xi)$, then f(z) is starlike in |z| < R where k = 2.3...estimate is sharp for $f(z) = z + \frac{\gamma(\alpha - \beta)}{[2k(1 - \gamma \xi - \gamma) + \gamma]\partial(n, k)} z^{2k}$, for some k. $R = \inf_{k} \left\{ \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{(2k+s-2)\gamma(\alpha-\beta)} \right\}^{\overline{2k-1}}$ Proof: $f \in O_n(\alpha, \beta, \gamma, \xi)$ is convex of order $c, 0 \le c \le 1$ if $k = 2, 3, \dots$ The estimate is sharp for the function $\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > c$ $f(z) = z + \frac{\gamma(\alpha - \beta)}{[2k(1 - \gamma\xi - \gamma) + \gamma]\partial(n,k)} z^{2k}$ which is equivalent to for some k. **Proof:** *f* is starlike of order $s, 0 \le s \le 1$ if That is $\operatorname{Re}\left(z\frac{f'(z)}{f(z)}\right) > s$ $\frac{\sum_{k=2}^{\infty} 2k(2k-1) a_{2k} z^{2k-4}}{1 + \sum_{k=2}^{\infty} 2k a_{2k} z^{2k-4}}$ (3.1) that is it $\left|z\frac{f'(z)}{f(z)}-1\right| \le 1-s$ (3.2)This simplifies to Using the arguments similar to theorem 4,We get $\sum_{k=2}^{\infty} \left| \frac{(2k+s-2) a_{2k} |z|^{2k-1}}{1-s} \right|^{2k-1}$ $< R = \inf_{k} \left\{ \frac{(1-c)[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{2k(2k-2+c)\nu(\alpha-\beta)} \right\}^{\frac{1}{2k-1}}$ by (1.1) we have 5. EXTREME POINTS: $a_{2k} \leq \frac{\gamma(\alpha - \beta)}{[2k(1 - \gamma\xi - \gamma) + \gamma]\partial(n, k)} , k \geq 2$ **Theorem 6:** Let $f_1(z) = z$ (3.4) $f_k = z + \frac{\gamma(\alpha - \beta)}{[2k(1 - \gamma\xi - \gamma) + \gamma]\partial(n, k)} z^{2k}, \ k = 2, 3...$ Using (3.3) and (3.4) we get Then $f \in O_n(\alpha, \beta, \gamma, \xi)$ if and only if it can be expressed in $\left|z\right|^{2k-1} \leq \frac{\left[2k(1-\gamma\xi-\gamma)+\gamma\right]\partial(n,k)}{(2k+s-2)\gamma(\alpha-\beta)}$ the form $f(z) = \sum_{k=1}^{\infty} \lambda_k f_k(z)$, where $\lambda_k \ge 0$, and $\sum_{k=1}^{\infty} \lambda_k = 1$. thus. $|z| \le R = \inf_{k} \left\{ \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{(2k+s-2)\gamma(\alpha-\beta)} a_{2k}, \right\}^{\frac{1}{2k-1}}$ **Proof:** Suppose $f(z) = \sum_{k=1}^{\infty} \lambda_k f_k(z)$

$$\begin{split} f(z) &= \sum_{k=1}^{n} \lambda_{k}^{k} \left(z + \frac{\gamma(\alpha - \beta)}{[2k(1 - \gamma\xi^{-} - \gamma) + \gamma]\partial(n,k)} z^{2k} \right) \\ \text{Where} \\ &= \frac{2k\gamma^{2}(\alpha - \beta)}{[2k(1 - \gamma\xi^{-} - \gamma) + \gamma]\partial(n,k)} z^{2k} \\ \text{Now, } f(z) &= O_{n}(\alpha, \beta, \gamma, \zeta) \text{ since} \\ &= \sum_{k=2}^{n} \frac{1}{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{[2k(1 - \gamma\xi^{-} - \gamma) + \gamma]\partial(n,k)}{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{[2k(1 - \gamma\xi^{-} - \gamma) + \gamma]\partial(n,k)}{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{[2k(1 - \gamma\xi^{-} - \gamma) + \gamma]\partial(n,k)}{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{[2k(1 - \gamma\xi^{-} - \gamma) + \gamma]\partial(n,k)}{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{[2k(1 - \gamma\xi^{-} - \gamma) + \gamma]\partial(n,k)}{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= 2 \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)}{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= 2 \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)}{(\alpha - \beta)} z^{k} \\ &= 2 \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)}{(\alpha - \beta)} z^{k} \\ &= 2 \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)}{(\alpha - \beta)} z^{k} \\ &= 2 \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)}{(\alpha - \beta)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \gamma\xi^{-} - \gamma) + \gamma)\partial(n,k)}{(\alpha - \beta)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)}{(\alpha - \beta)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)}{(\alpha - \beta)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)}{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)}{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)}{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)}{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)}{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)}{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)}{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)}{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,k)} z^{k} \\ &= \sum_{k=2}^{n} \frac{(2k(1 - \xi^{-} - \gamma) + \gamma)\partial(n,$$

NOVATEUR PUBLICATIONS International Journal of Research Publications in Engineering and Technology [IJRPET] ISSN: 2454-7875 VOLUME 3, ISSUE 6, Jun.-2017

	VOLOME 5, 1550E 0, juii2017
7. Closure Theorem	Proof : $f, g \in O_n(\alpha, \beta, \gamma, \xi)$ and hence
Theorem 8: Let $f_j \in O_n(\alpha, \beta, \gamma, \xi), j = 1, 2,$	
then $g(z) = \sum_{i=1}^{l} c_{j} \left(z + \sum_{k=2}^{\infty} a_{2k,j} z^{2k} \right)$	$\sum_{k=2}^{\infty} \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{\gamma(\alpha-\beta)} a_{2k}^2$
where $\sum_{j=1}^{l} c_{j} = 1$ and $f_{j}(z) = z + \sum_{j=1}^{\infty} a_{2k,j} z^{2k}$.	$\leq \left[\sum_{k=2}^{\infty} \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{\gamma(\alpha-\beta)} a_{2k}^{2}\right]^{2} \leq 1 $ (8.1)
Proof: We have	$\sum_{k=2}^{\infty} \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{\gamma(\alpha-\beta)} b_{2k}^{2}$
$g(z) = \sum_{j=1}^{l} c_j \left(z + \sum_{k=2}^{\infty} a_{2k,j} z^{2k} \right)$	$\leq \left[\sum_{k=2}^{\infty} \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{\gamma(\alpha-\beta)} b_{2k}^{2}\right]^{2} \leq 1 $ (8.2)
$g(z) = z \sum_{j=1}^{l} c_j + \sum_{j=1}^{l} \sum_{k=2}^{\infty} c_j a_{2k,j} z^{2k}$	Adding (8.1) and (8.2) we get
$= z + \sum_{k=2}^{\infty} \sum_{j=1}^{l} \left(a_{2k,j} c_j \right) z^{2k} $ (7.1)	$\sum_{k=2}^{\infty} \frac{1}{2} \left[\frac{[2k(1-\gamma\xi-\gamma)+\gamma]\hat{o}(n,k)}{\gamma(\alpha-\beta)} \right]^{2} (a_{2k}^{2}+b_{2k}^{2}) \leq 1 $ (8.3)
$= z + \sum_{k=2}^{\infty} e_k z^{2k} $ (7.2)	We must show that $h \in O_n(\alpha, \beta, \phi, \xi)$ that is $\sum_{k=2}^{\infty} \left[\frac{[2k(1-\phi\xi-\phi)+\phi]\partial(n,k)}{\phi(\alpha-\beta)} \right]^2 \left(a_{2k}^2+b_{2k}^2\right) \le 1 $ (8.4)
Where, $e_k = \sum_{j=1}^{l} a_{2k,j} c_j$	$\int_{k=2}^{\infty} \phi(\alpha - \beta) \int_{k=0}^{\infty} \phi(\alpha - \beta) (8.4)$ In view of (8.3) and (8.4) it is enough to show that
Since $f_j \in O_n(\alpha, \beta, \gamma, \xi)$ by (1.1)	$\frac{[2k(1-\phi\xi-\phi)+\phi]\partial(n,k)}{\phi(\alpha-\beta)} \leq \frac{1}{2} \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{\gamma(\alpha-\beta)}$
$\sum_{k=2}^{\infty} \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{\gamma(\alpha-\beta)} a_{2k,j} \le 1$	This simplifies to $\phi \ge 2\gamma$
(7.3) In view of (7.2), $g(z) \in O_n(\alpha, \beta, \gamma, \xi)$ if $\sum_{k=2}^{\infty} \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{\gamma(\alpha-\beta)} e_k \leq 1$ Now, $\sum_{k=2}^{\infty} \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{\gamma(\alpha-\beta)} e_k$ $= \sum_{k=2}^{\infty} \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{\gamma(\alpha-\beta)} \sum_{j=1}^{l} a_{2k,j} e_j$ $= \sum_{j=1}^{l} c_j \sum_{k=2}^{\infty} \frac{[2k(1-\gamma\xi-\gamma)+\gamma]\partial(n,k)}{\gamma(\alpha-\beta)} a_{2k,j}$ $\leq \sum_{j=1}^{l} c_j$, using (7.3) $= 1$ Thus, $g(z) \in O_n(\alpha, \beta, \gamma, \xi)$. Theorem 9: Let $f, g \in O_n(\alpha, \beta, \gamma, \xi)$ then	 REFERENCES: DarusM, Some subclass of analytic functions Journal of Math. And Com. Sci., (Math ser), 16(3) (2003), 121-126. Duren P. L., Univalent functions, Grundiehren Math. Viss., Springer Verlag, 259 (1983). Goodman A. W., Univalent functions, Vol.I and II, Marine Publ. Company, Florida (1983). Lee S. K. and Johi S. B. Application of fractional calculus operators to a class of univalent functions with negative coefficients, Kyungpook Math. J., 39 (1999), 133-139. Noor K. I., Some classes of p-valent analytic functions defined by certain integral operator, Appl. Math. Comput., XX (2003), XXX-XXX-1-6 Ruscheweyh St. New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975),109-115. Esa G. H. and Darus M., Application of fractional calculus operators to a certain class of univalent functions with negative coecients, International Mathematical Forum, 2(57) (2007), 2807-2814. S. Ruscheweyh, Neighborhoods of univalent functions, proc, Amer. Math.Soc.,81 (1981), 521-527.
$h(z) = z + \sum_{k=2}^{\infty} \left(a_{2k}^2 + b_{2k}^2 \right) z^{2k} \text{ is in } O_n(\alpha, \beta, \phi, \xi)$ Where $\phi \ge 2\gamma$	
$-\gamma = -/$	