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ABSTRACT: 

In this paper, we introduce the class ( , , , )nO     by 

using the Ruscheweyh Operator. The aim of this 
paper is to study some properties of this class,like, 
coefficient inequality, Hadamard products, Extreme 
points, radius of starlikeness and convexity, closure 
theorem of a class of analytic and univalent function 
in the unit disc. The results obtained here are found 
to be sharp. 
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1. INTRODUCTIONS:  
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Let ( )nD f z denote the 
thn orderderivative introduced 

by Ruscheweyh [6]. 
The Ruscheweyh derivative is defined as  

follows: :  nD S S such that 
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We aim to study the class ( , , , )
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The investigation here is motivated by M.Darus [1].  
Next we characterize the class ( , , , ) by 

proving the Coefficient Inequality.
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1. COEFFICIENT INEQUALITY: 

Theorem 1:
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Proof:Assume inequality (1.1) is true then 
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by maximum modulus principle,  
 ( , , , ).nf O       
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     (1.2)                                               

Using the fact that Re( (z)) ( )f f z
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Choosing on real axis and allowing 1z z    
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Thus the proof is complete.  
Corollary: 
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3. GROWTH AND DISTORTION THEOREM: 
Theorem 2:

 If the function ( ) ( , , , ) then f z O
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Combining (2.1) and (2.2) we get the result.  
Theorem 3: 
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The result is sharp for
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4. RADIUS OF STARLIKENESS AND CONVEXITY: 

 Theorem 4: Let  ( ) ( , , , )nf z O     ,then 
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5. EXTREME POINTS: 
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Hence the result. 
 
6. Hadamard Product 
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7. Closure Theorem 
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