
NOVATEUR PUBLICATIONS 
INTERNATIONAL JOURNAL OF RESEARCH PUBLICATIONS IN ENGINEERING AND TECHNOLOGY [IJRPET]  

NATIONAL CONFERENCE ON INNOVATIVE TRENDS IN ENGINEERING & TECHNOLOGY-2017 
15TH & 16TH MARCH 2017 

CONFERENCE PROCEEDINGS ISSN NO - 2454-7875 
______________________________________________________________________________________________________________________________________________________________________________________ 

9 | P a g e                                                               w w w . i j r p e t . o r g  
 

Paper ID: NITET03 

KERNEL MODULES AND DEVICE DRIVERS, DEMYSTIFIED 
RAJESH D. NAGAWADE 

Head, Learning& Development,  SVERI, Pandharpur, rajesh.nagawade@gmail.com 
 

M.A. KHURESHI 
Head, CSE Department, AGPIT, Solapur, Haq123.275@gmail.com 

 
S. M. KUMBAR 

Assistant Prof. CSE Department, SVERI, Pandharpur,sharan64.kumbar@gmail.com 
 
ABSTRACT 
Linux Operating System provides services at various 
levels; starting from commands to shell, system calls in 
application level, kernel level calls and function calls 
at driver level. This is the entire path for a user to 
reach out to the actual devices like hard disk, 
keyboard etc. 
Kernel modules are conceptually (and in code also) 
different than ordinary application programs. Device 
driver programs are basically kernel modules. Also 
there are other kernel modules which are not device 
drivers. 
This paper attempts to demystify this concept. It starts 
with explaining the concept of kernel module with an 
example. It then proceeds with the concepts of writing 
device drivers. Example source code of character 
device driver is chosen for illustration. 
Objective is to simplify various complex concepts 
related to kernel modules and device drivers. This 
should enable the reader to design and write basic 
device drivers. Audience is expected to be familiar 
with Linux systems programming. 
 
INTRODUCTION / AGENDA 
As new devices are introduced their device drivers need to 
be developed. Although their look and feel will be similar, 
minute details need to be worked out for expected results. 
Also sometimes existing drivers need to be modified for 
specific purposes. Porting devices to newer operating 
systems is also a task many a times. Some times kernel 
modules also need to be customized for newer 
requirements. This requires many a people to know, 
design and develop kernel modules and device drivers. 
This paper attempts to demystify this concept. It starts 
with explaining the concept of kernel module with an 
example. It then proceeds with the concepts of writing 
device drivers with an example of generic device driver. 
Source codes are provided for actual exposure. 
What to expect: generic concepts of kernel modules, device 
drivers and their interdependencies. 
What not to expect: specific details of any particular device 
or its driver. Running sample codes for both kernel module 
and a driver are provided to support concepts. 
 
 

KERNEL MODULES 
A) JOURNEY FROM USER APPLICATION LEVEL TO 
MODULE LEVEL 
Linux Operating System provides services at various 
levels; starting from commands to shell, system calls in 
application level, kernel level calls and function calls at 
driver level. This is the entire path for a user to reach out 
to the actual devices like hard disk, keyboard etc.  
Kernel modules are conceptually (and in code also) 
different than ordinary application programs. Device 
driver programs are basically kernel modules. Also there 
are other kernel modules which are not device drivers.  
User types command, shell creates processes to cater for 
this command. All such processes and shell itself may 
make use of system calls. This is a user or application level 
operation. 
 Shell itself is an application program just like other 
programs that we develop. The only difference is that it got 
started by some system process. ( i.e. login process). We 
are at uppermost level then.  
Of course shell and application programs need not be 
referred to as part of kernel albeit they are part of the 
system. 
These programs can make system calls to avail of 
privileged services from kernel. These services are 
available only when process runs in kernel mode. These 
system calls cane be termed as static portion of the kernel. 
I would prefer to term these, as static kernel because these 
are active only when called by a process. And because they 
do not represent a process, neither these have a main ( ) in 
their code. These are similar to ordinary functions but run 
in kernel mode and have access to vital kernel data 
structures like fd table, process table etc.  
Apart from system calls kernel needs to do many activities 
on periodic basic. Hence it has many processes running in 
parallel like init 0, init 1, swapper, scheduler, page daemon 
etc. These are basically programs and are very similar to 
application programs except that these kernel processes 
run most of their life in kernel mode. I would prefer to 
term this as dynamic kernel. 
These kernel processes, data structures, system calls are 
never swapped out of memory unlike application 
processes which are swappable. Thus this is resident 
kernel. 

http://www.ijrpet.org/
mailto:rajesh.nagawade@gmail.com
mailto:Haq123.275@gmail.com
mailto:sharan64.kumbar@gmail.com


NOVATEUR PUBLICATIONS 
INTERNATIONAL JOURNAL OF RESEARCH PUBLICATIONS IN ENGINEERING AND TECHNOLOGY [IJRPET]  

NATIONAL CONFERENCE ON INNOVATIVE TRENDS IN ENGINEERING & TECHNOLOGY-2017 
15TH & 16TH MARCH 2017 

CONFERENCE PROCEEDINGS ISSN NO - 2454-7875 
______________________________________________________________________________________________________________________________________________________________________________________ 

13 | P a g e                                                               w w w . i j r p e t . o r g  
 

Now let us see kernel module in contrast with system calls 
and kernel processes. 

 Kernel modules are not supposed to run forever 
like kernel processes.  

 These are not called by user programs like system 
calls. 

 Their executable / binary code need not exist all 
the time. 

 Kernel module source code has a definite entry 
and exit point but does not have a main () 
function. 

 If binary can be linked with kernel, it will be part 
of resident kernel. 

 If the binary is not linked with kernel and is 
loaded when needed, it will not be part of resident 
kernel. 

 In this view of load or link approach – module can 
be part of static or dynamic kernel. 

 Module linked statically with kernel will require 
recompilation and reboot of kernel. 

 Load and remove of module can be done during 
run of the kernel. 

 
B) MODULE, APPLICATION PROGRAM AND SYSTEM 
CALLS 

 
Figure No 1. Hierarchy of calls happening from user 

application to device driver 
 

Figure no 1 illustrates the programming levels viz. 
application level, shell level, system call and device driver 
level. 
 
C) UTILITIES FOR WORKING WITH MODULES 
Having logged in as super - user following utilities are 
available for working with modules.  
 Insmod allows us to insert a module dynamically 

into kernel when needed. It will remain in system 
unless we remove.  

If any other module gets inserted which uses this 
module, the earlier module’s uses count will be 
incremented. 

 rmmod decrements the uses count of the given 
module and removes it if the uses count reaches 0.  

 lsmod displays all modules currently inserted in the 
kernel. It is a module variant command for ls. 
For example mod.c can be the source code for 
module. Compiling without linking will produce 
mod.ko. It can be inserted in kernel as follows. 
# insmod mod.ko 
Whether the insertion succeeded or not can be 
checked by  
# lsmod  | grep mod.ko  
This will also list us the size of the module inserted 
and its uses count. 
D) Makefile for compiling Modules 
Modules may have internal dependencies. Instead of 
manually keeping track of such dependencies, it is 
wiser to use a makefile for compiling modules.  

Following file namely Makefile can be used. It is generic in 
syntax and uses shell variables. So the same can be used 
for different modules also, provided the module name in 
Makefile is changed. 
With mod.c as module name, mod.ko can be prepared by 
this file by make command. 
KERNEL_BUILD := /lib/modules/`uname –r’/build 
CC := gcc 
PROG := app 
obj-m := mod.o 
modules: 
 @$(MAKE) -C $(KERNEL_BUILD) M=$(PWD) $@ 
$(PROG): $(PROG).c 
 @$(CC) -o $(PROG) $(PROG).c 
Following operations can be thus made. 
# make      ( prepares mod.ko ) 
# insmod mod.ko  ( inserts mod.ko ) 
# lsmod | grep mo  ( verifies insertion ) 
Let us say an application program app.c uses this module. 
Its binary can be prepared by  
 # make app 
During the make, inside Makefile, 

 `uname –r ‘ will get replaced by the present Linux 
version name path.  

 PROG will get replaced by app 
 PWD will get replaced by present working 

directory. 
 
GENERIC KERNEL MODULE 
Let us see what might be the minimal source code for a 
kernel module that may get repeated for most of the 
modules. We may have to add up additional functionality 
into this as per the task for which the module is designed. 
A) OBSERVATIONS FOR A GENERIC KERNEL MODULE 

 insmod internally calls module_init ( ) function 
and rmmod internally calls module_exit ( ) 
function. So the module must map his 

#   cat  fname 

(Shell Level) 

read   ( fd, buff , count ) 

(System Call Level) 

sys_read   (  ) 

(Indexes into dev driver 
module) 

my_read ( ) 

(Dev Driver’s function ) 

copy_to_user ( ) 

(copy from kernel 
space to user space) 

http://www.ijrpet.org/


NOVATEUR PUBLICATIONS 
INTERNATIONAL JOURNAL OF RESEARCH PUBLICATIONS IN ENGINEERING AND TECHNOLOGY [IJRPET]  

NATIONAL CONFERENCE ON INNOVATIVE TRENDS IN ENGINEERING & TECHNOLOGY-2017 
15TH & 16TH MARCH 2017 

CONFERENCE PROCEEDINGS ISSN NO - 2454-7875 
______________________________________________________________________________________________________________________________________________________________________________________ 

14 | P a g e                                                               w w w . i j r p e t . o r g  
 

initialization and clean up functions to these 
functions, respectively.  

 In order to be able to give our chosen names to 
init and clean up function the mapping can be 
done as follows. 
module_init ( mod_init ); 

 module_exit ( mod_clean ); 
 Module writer is responsible to define mod_init( ) 

and mod_clean( ). Kernel will make sure to call 
these during module insertion and clean up. 

 The modules cannot make any user level function 
calls.  

 It cannot make system calls or library function 
calls. For example calling printf ( ), read ( ), fread 
() from a module will not be permitted. 

 Module init and exit functions must have their 
execution time pretty small. 

 A module cannot output on standard output but 
its output can been seen by # dmesg. This will 
show all messages logged in by modules till now. 

  # dmesg –c will clear the log. 
B) ALGORITHM TO WRITE A MODULE 
Following algorithm helps one write a generic module. 
1) Include the files init.h and module.h from linux folder 
2) Announce the license as Dual BSD / GPL 
3) Write definition for functions which will do module 

initialization and module clean up – say F1 and F2, 
respectively 

4) By using module_init () and module_exit() function 
calls, associate these names F1 and F2 for init and 
cleanup work. 

 
DEVICE DRIVER AS A KERNEL MODULE 
A device driver is a kernel module that can be statically 
linked with or dynamically inserted in kernel. Kernel 
reaches out to such driver by treating it as a file in 
directory /dev. For example /tty represents keyboard – 
monitor combination. The major number and minor 
number fields of the inode of such file map into the specific 
device driver. 
The major number decides a class of devices and hence 
their driver. And minor number differentiates between the 
various devices that the driver can handle. 
When user calls system calls like open (), read (), close ( ), 
ioctl () kernel refers to the file’s inode and internally uses 
its major and minor numbers.  
Kernel uses a data structure called as file operations data 
structure. This data structure has fields as pointers to 
functions as shown below. 
 
struct file_operations { 
         llseek  : my_llseek, 

read  : my_read, 
         write  : my_write, 
         ioctl  : my_ioctl, 

open  : my_open, 

         release  : my_release,       owner 
 :THIS_MODULE}; 
Now depending upon the functionality the device needs to 
provide, the device driver writer needs to define his 
functions and assign these pointers to his functions. Such 
file operations structure then needs to be passed to the 
following function. 
struct file_operations my_fops; 
reg_chrdev ( MAJOR_NO , " mydevice " , &my_fops ) ; 
This registers the driver’s functions with the kernel; thus 
the driver is registered. 
As user calls the functions kernel uses this structure to 
locate driver’s functions that you define. 
Here MAJOR_NO is the major number for the device file 
namely mydevice. This file represents our driver at kernel 
file system. This is created as by  
# mknod /dev/mydevice c  250 0 
c here indicates it is a character device and 250 is its major 
number and 0 is minor number. 
Kernel thus calls our driver’s functions. At that instant it 
gives us file *, inode * and other information as parameters 
depending upon the file user wants to work upon. 
struct   file  * 
struct  inode * 
Using these pointers to structures the driver functions can 
dig into file relevant details like major number, minor 
number, size of file, owner, access permissions etc. There 
are nested structures inside structures giving us more 
information. 
Driver can assign his own buffers for storing transient data 
during transfer. Ideally this data should be allocated using 
kalloc ( ) and care should be taken that its use is 
synchronized between multiple instances of driver calls. 
That is driver routines should be re entrant. 
 
A GENERIC DEVICE DRIVER 
Let us consider a generic device driver, that is the driver 
functionally that must be common between all the drivers. 
This code will be architecture independent and should be 
found in most of the drivers. 
Let us say we want to provide my open, myriad, mis write , 
my close and my IOCtl functions inside device driver 
module. So we will map these using fops structure. 
Also we decide to make a device file entry by name “my 
device” under / dev directory by using mknod. 
The kbuf array and DriverData represents driver level 
data. 
User’s read system call will receive data from kbuf during 
my_read ( ) routine of driver. This is managed by 
copy_to_user ( ) kernel function. Also from user’s data 
given in write system call kbuf  will get filled in during 
my_write ( ) routine of driver. This is managed by 
copy_from_user ( ) kernel function. 
This will complete the interface from user application to 
kernel to the device driver. Now depending upon different 
devices and their functionality the other section of the 
driver that is interacting with actual device will change. 

http://www.ijrpet.org/


NOVATEUR PUBLICATIONS 
INTERNATIONAL JOURNAL OF RESEARCH PUBLICATIONS IN ENGINEERING AND TECHNOLOGY [IJRPET]  

NATIONAL CONFERENCE ON INNOVATIVE TRENDS IN ENGINEERING & TECHNOLOGY-2017 
15TH & 16TH MARCH 2017 

CONFERENCE PROCEEDINGS ISSN NO - 2454-7875 
______________________________________________________________________________________________________________________________________________________________________________________ 

15 | P a g e                                                               w w w . i j r p e t . o r g  
 

This other section will demand for studying the actual 
behavior and architecture of the specific device. Before we 
discuss such device specific changes, let us see the sample 
source code for such generic device driver. 
 
A) ALGORITHM TO WRITE A GENERIC DEVICE DRIVER 

1) Define MAJOR_NO as 250 
2) Include the files module’s, init.h, fs.h and uaccess.h 

from linux folder 
3) consider major as integer and kbuf as char array  
4) DriverData structure holds val as long and str as 

char array – as members. 
5) struct inode  * and struct file  * parameters are 

available to my_open function. Define such function 
to find minor number using following call  

minor = MINOR(filp->f_dentry->d_inode->i_rdev) 
6) In the similar manner define my_close function. 
7) In the same manner define my_read function and iit 

will call the function copy_to_user ( buf, kbuf, count 
) 

8) Define my_write function and it will call 
copy_to_user ( buf, kbuf, count ) 

9) Functions my_read and my_write take following 
parameters (struct file  * filp, char  * buf, size_t 
count, loff_t  * offset) 

10) Function for control operations take following 
parameters ( struct inode  * inode ,  struct file  * fp , 
unsigned int cmd ,  unsigned long  arg ) 

11) Following will find driver data for control data  = ( 
struct  DriverData  * ) arg ; after this data -> val 
integer and data -> str string is available for use. 

12) Now define file operations structure where we 
assign read to my_read, write to my_write, open to 
my open, release to my close, IOCtl to my control 
and owner to THIS_MODULE 

 
B) ALGORITHM FOR PROGRAM USING THIS DRIVER 
Following algorithm may use such driver code. 

1) Ubuff  is character array 
2) User Data is structure with val as integer and str 

as string – say we take data as variable of this 
structure 

3) We open the file /dev/mydevice in read write 
mode 

4) We proceed to assign value say 100 to data. Val 
5) We assign some string say “I Came From 

Application" to data.str 
6) Now we call ioctl ( fd, 0, &data )  
7) Then we call read ( fd, ubuff, 15 ) 
8) This should give us value for ubuff 
9) Now we may change ubuff to say “Take this from 

application “ 
10) And we may then call write ( fd , ubuff , strlen ( 

ubuff ) ); 
11) This should copy it to kernel and device through 

our driver functions. We can then close file. 

 It calls ioctl and passes over the string "I came 
from application" to the driver. In a specific driver 
other information needed for controlling device 
can be passed over here. 

 It calls read ( ) and accepts the string given by the 
driver. This can be the actual data that has been 
read from the device by the driver.  

 It calls write and passes over the string “Take this 
from application“, to the driver. This can then be 
written to the data space of the device at hand. 
 

C) OBSERVATIONS FOR SUCH GENERIC DEVICE DRIVER 
This sample device driver implements read, write, ioctl, 
open calls for the device represented by the file name 
mydevice and major number of 250. 
When an application calls  
read ( ) driver’s my_read ( ) gets called. Being a generic 
driver it simply copies it’s kbuf’s data into the application 
to cater his read request. 
write ( ) driver’s my_write ( )  gets called. Being a generic 
driver it simply retrieves data from the application and 
copies it into the driver’s kbuf. 
 
D) HOW TO TACKLE SPECIFIC DEVICES 
Herein we have not tackled where does kbuf gets data 
from before giving to application, and also what does 
driver do with the kbuf data after taking it from the user 
application. 
Answers to these questions depend upon what device 
driver we are designing and what are the ways to interact 
with the device. 
 
CONCLUSION: 
Device drivers have a generic section that is similar in 
most of the drivers. As per its interaction with devices the 
other section will change 
It works as a lower layer to kernel system calls. 
It is considered as a sub layer below kernel file system. 
Keeping it static and loadable during testing phase is 
advisable. It can be linked with kernel once tested 
completely.Future work in this can be as follows. 
Obeying the same skeleton various other device drivers 
can be tackled. These will have similar approach except 
few device specific changes. In order to achieve this, 
following areas needs to be focused namely PCI 
Architecture, Port IO Provision, Memory IO Provision. 
Modules can be developed on Linux and cross compiled for 
working on other architectures like ARM. 
 
REFERENCES 
1) Jonathan Corbet, Alessandro Rubini, and Greg Kroah-

Hartman, Linux Device Drivers, Third Edition 
2) Maurrice J. Bach, Design of UNIX 
3) W. R. Stevens, UNIX Network Programming 

  

http://www.ijrpet.org/

