STUDY ON THE IRON COMPLEXES OF EXPANDED PORPHYRINS, PHTHALOCYANINES, AND PORPHYRAZINES

Bir Prakash Mishra Dept of Chemistry J P Univ Chapra

Jai Ram Singh Dept of Chemistry J P Univ Chapra

Abstract:

Iron porphyrin complexes, which have the same core structure as the heme cofactor, perhaps the most widely are used compounds in O₂ binding and activation studies. Early efforts were made in stabilizing an Fe-O₂ moiety as a functional mimic of O₂-bound hemoglobin and myoglobin, to gain structural and electronic insights into the nature of the Fe-O₂ bonding in these heme proteins. As early as 1936, Pauling and Corvell determined that the Fe-O₂ group in oxyhemoglobin was diamagnetic This led to the proposal of several models to describe the nature of Fe-O₂ bonding ,which are detailed in several reviews-

Three limiting electronic descriptions have been considered: low-spin Fe^{II} with a singlet O_2 (the Pauling model), low spin Fe^{III} antiferromagnetically coupled to an S = 1/2superoxide (the Weiss model) and an intermediate-spin Fe^{II} coupled to a triplet O₂ (the McClure–Goddard model). Various spectroscopic such techniques, as Mössbauer, resonance Raman, and X-ray absorption spectroscopies-have now lent credence to the Weiss description for oxyhemoglobin (i.e. that it is a ferric superoxo species).

Fig. 1 Different models describing the nature of bonding in the Fe–O₂ intermediate in O₂-

binding heme proteins.

A major hurdle in stabilizing the Fe–O₂ moiety for reversible oxygen binding in simple iron(II) porphyrins is the unwanted auto-oxidation reactions that lead to the formation of iron(III) porphyrin μ -oxo/peroxo dimers. Several studies have led to a description of the synthetic requirements needed to stabilize an Fe-O₂ adduct. In synthetic model complexes, reversible O₂ binding often requires an axial ligand, usually an aromatic nitrogen base (e.g. pyridine, N-methylimidazole), to stabilize the Fe–O₂ adduct against further oxidation and dimerization reactions. The structure of the porphyrin has also been found to directly affect the stability of the O₂ adduct. The axial ligand could be covalently attached to the porphyrin to direct O₂ binding. On the other hand, incorporation of H-bonding groups (such as pivalamide) into the secondary coordination sphere stabilizes the Fe^{III}-superoxo species without the need for an axial ligand. Steric hindrance about the porphyrin ligand also prevents unwanted dimer formation. Perhaps the earliest and most well-known example of

the application of these synthetic strategies is the "picket-fence" porphyrin discovered by Collman and co-workers The diamagnetic Fe-O2 adduct of this complex was isolated and characterized using X-ray crystallography, to show the bent, end-on binding of dioxygen to the iron porphyrin. Forty years after the picketfence, the structural characterization of a fivecoordinate Fe-O2 adduct was achieved with a sterically bare porphyrin site-isolated inside a metal-organic framework. A number of examples since the picket-fence have shown that similar synthetic strategies can be successful for the stabilization of a ferric superoxo complex in a porphyrin scaffold, and these have been summarized in several reviews

Capped porphyrin

Strapped porphyrin

Fig 2Examples of synthetic iron porphyrin complexes with covalently attached groups for the steric protection of the Fe–O₂ adduct: the picket-fence porphyrin,.

While the inherent reactivity of Fe^{II} (porphyrin) with O_2 is circumvented by synthetic design to mimic O_2 binding, such reactivity can be

exploited for oxygenation reactions. One of the early products observed in the reaction between an Fe^{II} porphyrin and O₂ was a ferryl complex, $Fe^{iv}(0)$ porphyrin, which could transfer its O-atom to triphenylphosphine (PPh₃) quantitatively to form triphenylphosphine oxide (PPh₃O) in toluene at -80 °C. This observed substrate reactivity at low temperature opened up the possibility for catalytic turnover at ambient temperatures. Exposure of a solution of $Fe^{II}(TPP)$ (TPP = tetraphenylporphyrin) and excess PPh₃ to a stream of O2 in toluene at 25 °C resulted in the catalytic formation of PPh₃O (with a turnover number of approximately 27). The catalyst is inactivated by the formation of a μ -oxo dimer, which is unreactive to triphenylphosphine

The related ferric peroxo porphyrins, the oneelectron reduced analogs of ferric superoxo porphyrins, were synthesized following the addition of 2 equivalents of KO₂ (solubilized in Fe^{III}(Cl)(TPP) crown ether) to an complex via the reduced Fe^{II} porphyrin.Alternatively, the ferric peroxo porphyrin can be generated by electrochemical reduction of the ferric superoxo complex. Reactivity studies performed on these complexes showed that they are not

electrophilic and are instead nucleophilic (*i.e.* they are capable of oxidizing electron-poor alkenes). Naruta and co-workers demonstrated that a ferric hydroperoxo species can be selectively prepared by different synthetic routes. The ferric peroxo complex $Fe^{III}(O_2)(TMPIm)$ (TMPIm = imidazole-tethered trimesitylporphyrin) was prepared by either addition of O₂ and 1 equiv of cobaltocene (CoCp₂) in methanol, or addition of KO₂ to a solution of Fe^{II}(TMPIm). EPR and resonance Raman spectroscopies show results consistent with a side-on bound, η^2 -peroxo ferric species. Protonation of this complex results in a spinstate change from high-spin to low-spin Fe^{III}, with a concomitant change from an η^2 to an $\eta^1 O_2$ binding mode for the ferric hydroperoxo Fe^{III}(OOH)(TMPIm). Interestingly, complex. porphyrin modification using a bulky xanthene group to provide steric hindrance results in the transient formation of an η^1 , end-on bound ferric peroxo porphyrin complex

The ability to mimic efficient catalytic alkane performed oxygenations bv heme monooxygenases using simple metalloporphyrins and O₂ has been an active field of research, due to its enormous industrial potential. A primary requirement for these catalysts is the formation of a metal-oxo species, which is the key oxidizing species in the heme enzymes. While catalytic C-H bond oxidation has been demonstrated with iron porphyrins and O₂ congeners such as PhIO, mCPBA and H₂O₂, oxidation with O₂ remains a significant challenge, in part due to the need for protons and exogenous reductants to cleave the O-O bond. Ellis and Lyons have reported the catalytic oxidation of light alkanes, propane and isobutene, with β -halogenated (Br, Cl) Fe^{III} porphyrins and O₂. An increase in the oxidation activity was observed with an increase in the number of halogens in the porphyrin ring. In particular, the perhalogenated complex, Fe^{III}(Cl)(TPPF₂₀βBr₈), showed the highest activity with a TON (turnover number) of >13000 in in the hydroxylation of isobutane to t-butanol at room temperature (25 °C). A mechanism was proposed), similar to the catalytic oxygenation of triphenylphosphine, where the active oxidant is a ferryl species activated by the electron-withdrawing halogen substituents. Subsequent studies by Labinger and Gray have shown that this mechanism is not viable, due to stability of the Fe^{II} species the of the $(Fe^{III/II} =$ perhalogenated porphyrins 0.31 V vs. AgCl/Ag) toward O₂. Instead, a radicalchain autoxidation mechanism was proposed (wherein the Fe^{III} porphyrin complex catalyzes the decomposition of the alkyl hydroperoxide that was formed over the course of the radical chain reaction with O₂. Moreover, the oxidative activity of this catalyst was inhibited upon addition of a radical trap. This mechanism is different in that it does not undergo a pathway analogous to those found in heme enzymes, but instead relies on the redox power and durability of the catalyst in reacting with alkyl hydroperoxides that are formed in the process.

Fe^{III} porphyrin/O₂ catalyst

Page | 3

Iron(III) porphyrin, by itself, does not react with O_2 . Catalytic turnover with O_2 is typically achieved by the addition of external coreductants to generate Fe^{II}(porphyrin) and initiate the reaction, as shown in. Catalytic substrate oxidation has been previously demonstrated with Fe^{III}(porphyrins) and reductants, such as H₂ in colloidal Pt. Another possible point of entry into a catalytic oxygenation cycle is via the photolytic cleavage of a bis-iron(III)-µ-oxo porphyrin. Nocera and coworkers have shown that the use of Pacman porphyrin systems enables facile turnover due to greater substrate access to the photogenerated Fe^{IV}(0) species Irradiation of a solution of a bis-iron(III)-µ-oxo pacman porphyrin (DPDF)Fe₂O (DPDF = fluorinated Pacman porphyrin with a dibenzofuran spacer) the presence of 1 atm of O_2 and in hydrocarbons, such as toluene, cumene, diphenylmethane, and fluorene, results in the catalytic oxidation of these substrates with modest turnover numbers of up to 287. The key oxidizing species upon photolysis is proposed to be an $Fe^{iv}(O)$ species, and the Fe^{II} porphyrin product after substrate oxidation reverts back to the bis-iron(III)-µ-oxo porphyrin upon exposure to 02. This photocatalytic oxidation cycle using Pacman systems has also been used to oxidize O-atom acceptors such as phosphines, sulfides, and olefins.

Iron phthalocyanines, and the related iron porphyrazines, can also perform the same bioinspired catalytic oxidation reactions with with O₂ typically associated porphyrin complexes. For example, the catalvtic oxygenation of PPh₃ has been observed with iron phthalocyanine catalysts and O₂. The catalytic substrate oxidation properties of iron phthalocyanines and other related complexes have been discussed in detail in several reviews. Interestingly, there have been no examples of structurally characterized O₂ adducts of iron phthalocyanines or iron porphyrazines. Fitzgerald and coworkers showed that iron(II) tetraanthracenotetraazaporphyrin

(Fe^{II}(TATAP)), shows no affinity for O₂, and this was explained in terms of an unusually positive Fe^{III/II} redox potential. For comparison, the electron-withdrawing highly species Fe^{II}(TPFPBr₈) $(TPFPBr_8 =$ octabromotetrakis(pentafluorophenyl)porphyr in), which undergoes O2-mediated alkane oxidation *via* a radical chain autoxidation mechanism, was also shown to be inert towards 0₂.

Iron Corroles and Corrolazines

In contrast to iron(II) porphyrins, which readily react with dioxygen, O₂ reactivity with iron corroles and corrolazines remains relatively unexplored. Examples of characterized Fe-O2 adducts in corroles are non-existent in the literature, perhaps arising from the stabilization of the high-valent redox states in corroles, which is the opposite of what is required for O₂ reactivity (*i.e.* an electron rich metal center). Reduction to the anionic Fe(II) corrole may be performed electrochemically to access the iron(II) state for O2 binding. Kadish and coworkers have shown that reduction of Fe^{III}(oec) (oec octaethylcorrole) to Fe^{II}(oec)⁻ occurs in a reversible manner at -0.68 V vs. SCE (saturated calomel electrode) in benzonitrile, however the reactivity of this species with O_2 was not studied. Murakami has shown that Fe^{III} corroles can be reduced to the Fe^{II} state by the addition of hydroxide ion (OH⁻) in the presence of olefins but in the presence of O₂ at 25 °C, the Fe^{II} species undergoes outer-sphere electron transfer with O₂ to revert back to the Fe^{III} corrole complex.

Iron(III) corroles, in concentrated solutions, react with O_2 to form bis-corrole-diiron(IV)- μ oxo dimer complexes. The mechanism by

which the μ -oxo dimer forms has not been investigated, but is presumed to proceed through a mechanism similar to that of the formation of the μ -oxo dimer of the iron porphyrins, wherein an iron-superoxo species is transiently formed. Catalytic oxygenation of olefins and hydrocarbons has been reported by Newcomb using the formally tetravalent biscorrole-diiron dimer complex μ-οχο (TPFC)Fe₂O (TPFC tris(pentafluoro)corrole).¹⁰¹ Photolysis of this complex by irradiation with a 355 nm laser pulse results in the formation of a putative corrole complex that $Fe^{v}(0)$ oxidizes cyclooctene to cyclooctene oxide with ca. 200 turnovers in the presence of excess O_2 (The iron(IV) complex Fe^{IV}(Cl)(TPFC) is also capable of oxidizing the C-H bonds of hydrocarbons such as cyclohexane and adamantane in the presence of *tert*-butyl hydroperoxide (t-BuOOH). Based on mechanistic studies, a radical-chain autoxidation mechanism was proposed, similar to that of the analogous Fe^{III}(Cl) porphyrins. Although corroles are known to stabilize formally high-valent oxidation states, the possibility of ligand noninnocence in these systems complicates electronic structure assignments. For example, recent X-ray absorption spectroscopy studies Fe(X)(tpc) (X = Ph, Cl, NO; tpc = on triphenylcorrole) suggest that their iron centers can be described as Fe^{III} -like for X = Cl, NO, consistent with an $Fe^{III}(X)(tpc^{+})$ configuration, or Fe^{iv} -like for X = Ph, which is closer to an $Fe^{V}(X)(tpc)$ description.

Fig. 5 Proposed mechanism for the photocatalytic oxygenation of substrates with (TPFC)Fe₂O and O₂.

While iron(III) corroles form µ-oxo dimers in the presence of O₂, iron(III) corrolazine Fe^{III}(TBP₈Cz) (TBP₈Cz octakis(tert-= butylphenyl)corrolazine) is remarkably unreactive towards dioxygen. However, in the presence of the oxidant H₂O₂, catalytic has oxygenation of sulfides been observed. Performing the oxygenation reaction of thioanisole with Fe^{III}(TBP₈Cz)/H₂O₂ in the presence of a large excess of H₂¹⁸O resulted in no incorporation of ¹⁸O into the methylphenyl sulfoxide product, indicating that a high-valent iron-oxo species was not formed in the catalytic process. A competing pathway was indicated, where disproportionation of H₂O₂ to O₂ was observed. A mechanism was proposed that accounts for all of the observations, which suggests the formation of an iron(III)hydroperoxide Fe^{III}-OOH adduct as the key oxidizing species in the sulfoxidation reaction.

NOVATEUR PUBLICATIONS International Journal of Research Publications in Engineering and Technology [IJRPET]

ISSN: 2454-7875 VOLUME 1, ISSUE 2, 2015

Fig. 6 Proposed catalytic sulfoxidation and catalase activity for Fe^{III}(TBP₈Cz) and H₂O₂

REFERENCES

- G. M. Yee and W. B. Tolman , Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases , P. M. H. Kroneck and M. E. Sosa Torres, Springer, 2015, vol. vol. 15, pp. 131–204
- 2. M. Abe *Chem. Rev.*, 2013, **113**, 7011 7088
- 3. W. T. Borden, R. Hoffmann, T. Stuyver and B. Chen, *J. Am. Chem. Soc.*, 2017, **139**, 9010 9018
- 4. J. P. Collman *Acc. Chem. Res.*, 1977, **10** , 265 —272
- 5. K. Shikama *Coord. Chem. Rev.*, 1988, **83** , 73 —91
- 6. M. Momenteau and C. A. Reed , *Chem. Rev.*, 1994, **94** , 659 698
- J. P. Collman, R. Boulatov, C. J. Sunderland and L. Fu, *Chem. Rev.*, 2004, **104**, 561 – 588
- R. E. Stenkamp *Chem. Rev.*, 1994, **94**, 715 —726

- 9. H. Decker, N. Hellmann, E. Jaenicke, B. Lieb, U. Meissner and J. Markl, *Integr. Comp. Biol.*, 2007, **47**, 631–644
- D. M. Kurtz Jr Comprehensive Coordination Chemistry II, T. J. MeyerPergamon, Oxford, 2003, pp. 229–260.
- A. S. Borovik, P. J. Zinn and M. K. Zart, *Activation of Small Molecules*, Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 187–234
- 12. R. D. Jones, D. A. Summerville and F. Basolo, *Chem. Rev.*, 1979, **79**, 139 179
- M. Sono , M. P. Roach , E. D. Coulter and J. H. Dawson , *Chem. Rev.*, 1996, **96** , 2841 – 2888
- 14. P. R. Ortiz de Montellano *Chem. Rev.,* 2010, **110**, 932 —948
- 15. T. L. Poulos Chem. Rev., 2014, **114**, 3919 —3962.
- 16. X. Huang and J. T. Groves, *Chem. Rev.*, 2018, **118**, 2491 2553
- 17. X. Huang and J. T. Groves , *J. Biol. Inorg Chem.*, 2017, **22** , 185 207
- I. Schlichting, J. Berendzen, K. Chu, A. M. Stock, S. A. Maves, D. E. Benson, R. M. Sweet, D. Ringe, G. A. Petsko and S. G. Sligar, *Science*, 2000, **287**, 1615
- 19. S. Nagano and T. L. Poulos , *J. Biol. Chem.*, 2005, **280** , 31659 31663
- 20. J. H. Dawson and M. Sono, *Chem. Rev.*, 1987, **87**, 1255 1276
- J. H. Dawson, R. H. Holm, J. R. Trudell, G. Barth, R. E. Linder, E. Bunnenberg, C. Djerassi and S. C. Tang, *J. Am. Chem. Soc.*, 1976, **98**, 3707 3709
- 22. B. R. Crane, A. S. Arvai, D. K. Ghosh, C. Wu, E. D. Getzoff, D. J. Stuehr and J. A. Tainer, *Science*, 1998, **279**, 2121 2126
- 23. C. S. Raman , H. Li , P. Martásek , V. Král , B.
 S. S. Masters and T. L. Poulos , *Cell*, 1998, **95** , 939 950 .