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ABSTRACT: 

We are looking at the Vaidya-Tikekar 

metric which represents a three-dimensional 

space with time being constant, having 

charged distribution in a spheroidal super 

dense star. We address a general solution to 

Maxwell- Einstein's field equations in terms 

of hyper-geometric series. These models 

permit huge densities, radii of the order of 

few kilometers and maximum mass up to 

four times solar mass. 
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INTRODUCTION: 

Stellar objects of spherical shape are 

generally electrically neutral in equilibrium. 

Even though the electric force of attraction 

prevalent in these objects prevents the collapse 

of a symmetrically spherical distribution of 

matter to a point singularity. This gravitational 

force of attraction is then balanced by the 

electrostatic force of repulsion as well as the 

pressure gradient within this stellar matter. 

These factors provide sufficient motivation for 

finding the interior sources for the Reissner-

Nordstrom metric, which generally describes the 

space time of a static spherically symmetrical 

charge distribution. Reissner (1916) and 

Nordstrom (1918) found out a straight forward 

generalization of Schwarzschild exterior metric 

and called it as Reissner-Nordstrom metric. 

Subsequently many exact solutions of the 

coupled Einstein-Maxwell equations 

corresponding to charged distribution of 

spherical objects are reported. 

A vast assemblage of stellar models 

having charge can be found in literature. Rainich 

(1925) has done a systematic study of 

electromagnetic fields in the background of 

general relativity and Papapetrou (1947) 

evaluated the equilibrium of charged spheres in 

the context of general relativity. Studies have 

been done that a fluid sphere having uniform 

density is more stable when it is charged as per 

Stenner (1973) and a matter distribution in a 

spherical environment retains its equilibrium if 

it is accompanied by an electric charge by 

Bonner (1960, 1965). In the case of static 

charged fluid spheres, a singularity free solution 

was obtained by Krori and Barua (1975) and was 

analyzed by Juvenicus (1976). Sah and Pant 

(1979) obtained a similar solution to Tolman 

Solution VI for spherically symmetric static 

charged fluid sphere. Cooperstock (1978) has 

done studies in perfect charged fluids which are 

in equilibrium and derived solutions explicitly 

for Maxwell-Einstein equations. V.O. Thomas and 

D.M. Pandya have obtained various analytic 

solutions by solving coupled Maxwell-Einstein 

equations, to spherical static symmetric systems 

having charge and they also made a stability 

analysis. Chang (1983) obtained flat interior 

solutions for charged dust distributions as well 
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as charged fluids. Joshi (1993) discussed about 

the linear equation of state of charged 

anisotropic matter and found that the solutions 

to Maxwell- Einstein system of equations are 

critical in defining the formation of singularities 

and the influence of charge in determining the 

maximum mass for stars. 

In this research paper, we have reached a 

new class of solutions for charged fluid 

distribution using hyper geometric series using 

3D- spheroidal space-time. A particular option 

for electric field intensity and radial pressure are 

chosen so as not to violate the physical 

requirements and regularity conditions. In Sect. 

2, we have defined the matter distribution and 

the metric considered for study. In Sect. 3, we 

have solved the Einstein's field equations using 

hyper geometric series and thus derived a 

general solution to Einstein's field equations and 

in Sect. 4 the physical plausibility and boundary 

conditions of this system was studied. In Sect. 5 

particular solution for a specific value of K and its 

physical plausibility was studied in detail and, 

thereby progressing towards conclusion and 

discussion. 

 

MATTER DISTRIBUTION ON SPHEROIDAL 

SPACE TIME: 

Consider Tikekar and Vaidya's approach 

(1982) in representing the anisotropic charged 

matter distribution using the spheroidal 

spacetime metric as 

𝒅𝒔𝟐 = −
𝟏 −

𝑲𝒓𝟐

𝑹𝟐

𝟏 −
𝒓𝟐

𝑹𝟐

𝒅𝒓𝟐 − 𝒓𝟐(𝒅𝜽𝟐 + 𝒔𝒊𝒏𝜽𝟐𝒅𝝋𝟐) + 𝒆𝝂(𝒓) 𝒅𝒕𝟐 (𝟏) 

where R and K<1 are geometric parameters and  

K = 1 −
b2

R2. The metric variables of  
1−

Kr2

R2

1−
r2

R2

  is 

related to the physical variables through 

Einstein's field equations which is given by  Rij −
1

2
Rgij =

8πG

c2 Tij, where Rij is the Ricci curvature 

tensor, R denotes scalar curvature, gij is the metric 

tensor and Tij denotes the energy- momentum 

tensor. 

Considering the physical content of the space 

time to a charged fluid having associated energy 

momentum tensor as,  

𝑻𝒊𝒋 = (𝝆 +
𝒑

𝒄𝟐)𝒖𝒊𝒖𝒋 − (
𝒑

𝒄𝟐) 𝒈𝒊𝒋 +
𝟏

𝟒𝝅
 [−𝑭𝒊𝜶𝑭𝒊𝜶 +

𝟏

𝟒
𝒈𝒊𝒋𝑭𝜶𝜷𝑭𝜶𝜷] (𝟐) 

where ρ represents matter density and p the 

fluid pressure.  

 

Fij, the anti-symmetric electromagnetic field 

tensor defined by 

𝑭𝒊𝒋 =
(𝝏𝑨𝒋)

𝝏𝒙𝒊
−

(𝝏𝑨𝒊)

𝝏𝒙𝒋
 (𝟑) 

and it satisfies the Maxwell’s equations, 
𝐅𝐢𝐣,𝐤 + 𝐅𝐣𝐤,𝐢 + 𝐅𝐤𝐢,𝐣 = 𝟎 (𝟒)

and      

  
𝛛

𝐱𝛂
(𝐅𝐢𝛂 √−𝐠) = 𝟒𝛑√−𝐠 𝐉𝐢 (𝟓) 

where g denotes the determinant of gij and Ji =

σui denotes the four-current vector, σ denotes 

the charge density and the unit four velocity field 

of matter is mentioned as ui = (0,0,0, e−
ν

2). 

Assuming the space time metric to be symmetric, 

it is evident that the only surviving term 

component of the electromagnetic field tensor is 

F14 = F41. 

Using this, the Maxwell's equation (5) for the 

spacetime metric (1) determines  

𝐅𝟏𝟒 = 𝐞
𝛎+𝛌

𝟐 ∫ 𝟒𝛑𝛔𝐫𝟐𝐞
𝟏

𝟐
 𝐝𝐫 

𝐫

𝟎
 (𝟔)  

 

 

Electric field intensity E is defined as 
    𝐄𝟐(𝐫) =  −𝐅𝟒𝟏 𝐅

𝟒𝟏 (𝟕) 

 

Hence from (5) and (6) it is clear that 

𝟒𝛑𝛔 =
𝟏

𝐫𝟐 [
𝐝

𝐝𝐫
(𝐫𝟐𝐄)] 𝐞−

𝛌
𝟐 (𝟖) 

 

The total charge contained in the sphere having 

radius r is given by 

𝐪(𝐫) = 𝟒𝛑∫𝐞
𝛌
𝟐
  𝛔𝐫𝟐𝐝𝐫 

𝐫

𝟎

 (𝟗) 

And hence the electric intensity will be  

𝐄(𝐫) =
𝐪(𝐫)

𝐫𝟐  (𝟏𝟎) 
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From the energy momentum tensor ((2) defined, 

the Einstein's field equations reduce to the 

system of three equations given by  

𝟖𝛑𝛒 + 𝐄𝟐 = −𝐞−𝛌 [
𝟏

𝐫𝟐 −
𝛌

𝐫
] +

𝟏

𝐫𝟐 
   

−𝟖𝛑𝐩 + 𝐄𝟐 = −𝐞−𝛌 [
𝟏

𝐫𝟐 +
𝛎′

𝐫
] +

𝟏

𝐫𝟐 
   

−𝟖𝛑𝐩 + 𝐄𝟐 = −𝐞−𝛌 [𝛎′ +
𝛎𝟐

𝟐
+

𝛎′ − 𝛌′

𝟐
−

𝛎′𝛌′

𝟐
  ] (𝟏𝟏) 

    

Further substitution determining p, ρ and E2 

makes these three equations to 

𝟖𝛑𝛒 =
𝐞−𝛌 

𝟐
[
𝛎′

𝟐
+

𝛎𝟐

𝟒
−

𝛎′𝛌

𝟒
−

𝛎′ + 𝟓𝛌

𝟒
] 

𝟖𝛑𝐩 =
𝐞−𝛌 

𝟐
[
𝛎′

𝟐
+

𝛎𝟐

𝟒
+

𝟑𝛎′𝛌

𝟐𝐫
−

𝛎′𝛌

𝟒
] +

𝐞−𝛌 − 𝟏

𝐫𝟐   

𝐄𝟐 =
𝐞−𝛌 

𝟐
[
𝛎′

𝟐
+

𝛎𝟐

𝟒
−

𝛎′ + 𝛌

𝟐𝐫
−

𝛎′𝛌′

𝟒
] +

𝟏 − 𝐞−𝛌 

𝟐𝐫𝟐
 (𝟏𝟐) 

These three equations relate the four 

variables ρ, p, ν and E2 since the assumption of 

spheroidal geometry for the space time fixes up 

eλ as stated in (1). Specific system of this system 

of equations can only be obtained when one or 

more relation between these variables is 

available. Usually this relation is provided by the 

equation of state for the charged fluid. However, 

it is also possible to obtain specific solution by 

prescribing an adhoc relation, relating these 

variables. This is the approach which has been 

followed in a number of works mentioned 

earlier. The adhoc relation may be in the form of 

geometrical constraints or specific forms 

governing variations of either p, ρ or E2  

individually or their combinations. Hence it is 

necessary to examine the physical viability of the 

solution obtained. We have obtained two types 

of solution of Maxwell- Einstein equations. 

Type I solution discussed follows a suitable path 

for the form of E2 is given. A detailed explanation 

on physical viability of the solution for particular 

value of K is mentioned. Type II solution follows 

ON demanding the geometrical requirement that 

the spheroidal space-time be embedded in 5-

dimensional flat space time. 

 

GENERAL SOLUTION TO MAXWELL-

EINSTEIN'S EQUATIONS: 

A solution to Maxwell- Einstein's 

equations follows on prescribing 

𝐄𝟐 =
𝛃𝟐𝐫𝟐𝐞−

𝛎
𝟐

𝐑𝟒 (𝟏 −
𝐊𝐫𝟐

𝐑𝟐 )
𝟐
 (𝟏𝟑) 

as a relation maintaining the variation of 

electrical field intensity responsible for the 

maintenance of equilibrium. Here β is a constant 

directly related to charge. From (13), it is very 

clear and evident that E > 0. Substituting (13) in 

(12), will help one to determine ν.    

  

𝛃𝟐𝐫𝟐𝐞−
𝛎
𝟐

𝐑𝟒 (𝟏 −
𝐊𝐫𝟐

𝐑𝟐 )
𝟐

= [
𝛎

𝟐
+

𝛎𝟐

𝟒
−

𝛎′

𝟐𝐫
] (𝟏 −

𝐫𝟐

𝐑𝟐)(𝟏 −
𝐊𝐫𝟐

𝐑𝟐 )

−𝟏

 

+
𝟏 − 𝐊

𝐑𝟐
(𝟏 −

𝐊𝐫𝟐

𝐑𝟐
)

−𝟏

−
(𝟏 − 𝐊)𝐫

𝐑𝟐
[
𝛎

𝟐
+

𝟏

𝐫
] (𝟏 −

𝐊𝐫𝟐

𝐑𝟐
)

−𝟐

 (𝟏𝟒) 

  

By introducing z, ψ and defining these 

variables by the relation,  

z2 = 1 −
r2

R2  and  

ψ = e
ν

2 =
14β2

K(K−1)
  

the equation assumes the form of a linear second 

order differential equation given by 

(𝟏 − 𝐊 + 𝐊𝐳𝟐)
𝐝𝟐𝛙

𝐝𝐳𝟐 − 𝐊𝐳
𝐝𝛙

𝐝𝐳
− +𝐊(𝐊 − 𝟏)𝛙 = 𝟎 (𝟏𝟓) 

  

Defining an independent variable , u2. =
K

K−1
, z2   K < 0   changes the differential equation 

(15) to the form 

(𝟏 − 𝐮𝟐)
𝐝𝟐𝛙

𝐝𝐮𝟐 + 𝐮
𝐝𝛙

𝐝𝐮
+ (𝟏 − 𝐊)𝛙 = 𝟎 (𝟏𝟔) 

Further considering the new independent 

variable x = u2 the differential equation (16) can 

be written in the form of a hyper-geometric 

equation as 

𝐱(𝟏 − 𝐱)
𝐝𝟐𝛙

𝐝𝐱𝟐 +
𝟏

𝟐

𝐝𝛙

𝐝𝐱
+

𝟏 − 𝐊

𝟒
𝛙 = 𝟎 (𝟏𝟕) 

  

The function ψ which satisfies the above 

equation can be equated to 

𝛙 =  𝐞
𝛎
𝟐 = 𝐀𝐅 [

−𝟏 + √𝟐 + 𝐊

𝟐
,
−𝟏 − √𝟐 + 𝐊

𝟐
,
𝟏

𝟐
, 𝐱]  

+𝐁𝐱
𝟏
𝟐
  𝐅 [

√𝟐 − 𝐊

𝟐
,
−√𝟐 − 𝐊

𝟐
,
𝟑

𝟐
, 𝐱]  (𝟏𝟖) 
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where F[a, b, c, x] is the hyper-geometric 

function with its arguments A and B are arbitrary 

constants. This (18) admits to be the general 

solution of the above differential equation (17). 

 

EXACT SOLUTION FOR 𝐊 =  −𝟏𝟒 AND ITS 

PHYSCAL PLAUSIBILITY: 

As a special case to strengthen the above 

solution obtained, we are considering a 

particular value of K to be K=-14. 

 

For K=-14, the closed form solution becomes, 

𝐞
𝛎
𝟐 =

𝛃𝟐

𝟏𝟓
+ 𝐀(𝟏 −

𝟏𝟒

𝟏𝟓
𝐳𝟐)

𝟑
𝟐
 

(𝟏 − 𝟔
𝟏𝟒

𝟏𝟓
𝐳𝟐) + 

𝐁𝐳(𝟏 −
𝟖

𝟑

𝟏𝟒

𝟏𝟓
𝐳𝟐 +

𝟖

𝟓
 (

𝟏𝟒

𝟏𝟓
𝐳𝟐)

𝟐

) (𝟏𝟗) 

 

Explicit expressions for matter density 

and fluid pressure were formulated. The solution 

will describe a space time of a physically viable 

distribution of charged fluid if it complies with 

the requirements such as  ρ > 0, p > 0 and ρ −

3p > 0.  

 

The implication of these conditions at the 

center was examined and the density at the 

center came out to be, 8πρ(0) =
45

R2 and the 

positivity of density at the center is evident from 

the expression. 

 

The condition p(0)>0 will be satisfied when any 

of the following condition hold true. 

−𝟓. 𝟎𝟖𝐀 + 𝟎. 𝟒𝟐𝐁 < 𝛃𝟐 < 𝟏. 𝟏𝟗𝐀 + 𝟏. 𝟒𝟑𝐁  or 
𝟏. 𝟏𝟗𝐀 + 𝟎. 𝟒𝟐𝐁 < 𝛃𝟐 < −𝟎. 𝟓𝟖𝐀 + 𝟎. 𝟒𝟐𝐁  
  

The condition ρ − 3p > 0 implies that 

 
15

R2 [
−875.31A+416B−450β2

89.08A+107B−75β2 ] ≥ 0 which gives the 

relation 

−𝟏. 𝟗𝟓𝐀 + 𝟎. 𝟗𝟐𝐁 ≥ 𝛃𝟐     or   −𝟏. 𝟗𝟓𝐀 + 𝟎. 𝟗𝟐𝐁 ≤ 𝛃𝟐 

 

If the distribution extends up to a finite 

radius a < R, the interior metric should 

continuously match with the exterior metric 

given by Reissner-Nordstorm metric given by, 

𝐝𝐬𝟐 = −[𝟏 −
𝟐𝐦

𝐚
+

𝐪𝟐

𝐚𝟐]

−𝟏

𝐝𝐫𝟐 − 𝐫𝟐𝐝𝛉𝟐 − 𝐫𝟐 𝐬𝐢𝐧𝟐 𝐝𝛗𝟐 

+[𝟏 −
𝟐𝐦

𝐚
+

𝐪𝟐

𝐚𝟐
] 𝐝𝐭𝟐 (20) 

    

At the boundary r=a, the fluid pressure vanishes 

and hence 

eν(a) = e−λ(a) = 1 −
2m

a
+

q2

a2
  

and 

𝛃𝟐 (𝟏 + 𝟏𝟑
𝐚𝟐

𝐑𝟐)

𝟏 + 𝟏𝟒
𝐚𝟐

𝐑𝟐

+
𝐀(𝟏 + 𝟏𝟒

𝐚𝟐

𝐑𝟐)

𝟏
𝟐

𝟑√𝟏𝟓
[𝟓𝟗 − 𝟑𝟖𝟐

𝐚𝟐

𝐑𝟐 + 𝟑𝟗𝟐
𝐚𝟒

𝐑𝟒]

+ 𝐁
𝟏𝟕

𝟕𝟔𝟓
(𝟏 −

𝐚𝟐

𝐑𝟐
)

𝟏
𝟐

[−𝟏𝟗 − 𝟕𝟖𝟒
𝐚𝟐

𝐑𝟐
+ 𝟏𝟓𝟔𝟖

𝐚𝟒

𝐑𝟒

= 𝟎 
From the above equations, A and B can be 

determined in terms of β2 and 
a2

R2. 

The total charge of the sphere will be 

 

𝐪𝟐 = 𝛂𝟐𝛃𝟐[𝐑𝟒 (𝟏 + 𝟏𝟒
𝐚𝟐

𝐑𝟐
)

𝟐

 

                                        

[
 
 
 
 

𝛃
𝟐

𝟏𝟓
+ 𝐀(𝟏 −

𝟏𝟒

𝟏𝟓
𝐳𝐚

𝟐)

𝟑
𝟐
(𝟏 − 𝟔

𝟏𝟒

𝟏𝟓
𝐳𝐚

𝟐)

+𝐁𝐳𝐚 (𝟏 −
𝟖

𝟑

𝟏𝟒

𝟏𝟓
𝐳𝐚

𝟐 +           
𝟖

𝟓
 (

𝟏𝟒

𝟏𝟓
 𝐳𝐚

𝟐)
𝟐

]
]
 
 
 
 

 (𝟐𝟏) 

 

It is evident that the power switches off when β 

becomes 0 and hence the solution will 

degenerate to that of an uncharged fluid sphere. 

And the mass of the fluid sphere can be 

determined from the boundary condition as 

𝟐𝐦

𝐚
=

𝟏𝟓
𝐚𝟐

𝐑𝟐

𝟏 + 𝟏𝟒
𝐚𝟐

𝐑𝟐

+
𝐪𝟐

𝐚𝟐
 (𝟐𝟐) 

 

All the variables in determining the mass 

of the fluid sphere are familiar to us from 

different equations generated. We have also 

studied the variation of ρ, p and ρ − 3p using 

numerical procedure and the condition on 
dp

dρ
 as 

these are evident from the tabular form hence 

generated. 
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SCHEME FOR COMPUTATION OF MASS AND 

SIZE OF THE FLUID SPHERE: 

The scheme for the computation of mass 

and size of the charged fluid sphere can be 

evaluated by defining a new parameter, μ as the 

ratio of density at the boundary to that at the 

center. 

𝛍 =
𝛒(𝐚)

𝛒(𝟎)
 (𝟐𝟐) 

 

TABLE 1: MASS FOR β2 = 2.0 
𝐚

𝐑
 A B R 𝐚 

𝐦

𝐌𝛉
 Q 

0.14 -1.2993 -5.9919 89.69 12.68 1.01 0.300 

0.20 -1.3902 -4.3352 76.61 15.32 2.01 0.627 

0.24 -1.4123 -3.0813 67.43 16.52 2.76 0.901 

0.28 -1.3949 -2.0615 60.60 17.14 3.31 1.127 

0.31 -1.3534 -1.2254 55.30 17.49 3.74 1.317 

0.34 -1.2965 -0.5294 51.07 17.69 4.07 1.480 

0.37 -1.2297 0.0559 47.59 17.81 4.33 1.622 

0.40 -1.1564 0.5513 44.68 17.87 4.55 1.749 

0.42 -1.0790 0.9719. 42.20 17.90 4.72 1.864 

0.44 -0.9990 1.3292 40.06 17.92 4.87 1.969 

0.46 -0.9177 1.6321 38.19 17.91 4.99 2.066 

0.48 -0.8359 1.8875 36.54 17.90 5.10 2.157 

a The mass m for the class of charged fluid 

spheres having β2 = 2.0 for different values of 
a

R
, A and B and the same is tabulated. 

 

TABLE 2: NUMERICAL PROCEDURE. 

𝐚

𝐑
 𝐩(𝟎) 𝛒(𝟎) 𝛒(𝟎) − 𝟑𝐩(𝟎) 

0.1414 0.00031 0.00527 0.00463 

0.2000 0.00083 0.00683 0.00516 

0.2449 0.00158 0.00831 0.00515 

0.2828 0.00260 0.00964 0.00443 

0.3162 0.00398 0.01072 0.00274 

0.3464 0.00583 0.01141 -0.00026 

0.3741 0.00836 0.0115 -0.00521 

0.4000 0.01192 0.01061 -0.01322 

0.4242 0.01728 0.00797 -0.02659 

0.4472 0.02632 0.00171 -0.05093 

0.4690 0.04522 -0.01437 -0.10482 

0.4898 0.11389 -0.0802 -0.30798 

b The values of   ρ, p, ρ − p and ρ − 3p evaluated at the 

center using numerical procedure. 

RESULTS AND DISCUSSION: 

Tikekar and Vaidya (1982) model of 

super dense fluid spheres with densities of fluid 

matter content of 1014 − 1016gmcm−3 in range is 

usually developed during the last stages of stellar 

development. Here we assumed that at the 

boundary (when r becomes a), the density of the 

star becomes 2 ×  1014 gmcm−3 and this 

particular value corresponds to that of neutron 

star. 

In this criteria defined, za
2 = 1 −

a2

R2 , from 

the given expression is clear that μ can be 

defined for all values of 
a

R
  in terms of β. Only 

those values will be physically permissible for 

which    0 < μ < 1. Subsequently if the surface 

density ρ(a) and μ are specified, R can be 

determined from the equation, ρ(0) =
ρ(a)

μ
=

45c2

8πGR2 in terms of μ, β and ρ(a). From these a can 

be found and (21) helps us to decide q in terms 

of β and 
a

R
  and the total mass can be determined 

from (22).  

For estimation we have assumed the 

value of ρ(a) as 2 ×  1014 gm cm−3 for the 

surface density of matter. Hence we have arrived 

at the values of A and B, the curvature parameter 

R, the boundary radius a, the total charge q and 

the mass m for the class of charged fluid spheres 

having β2 = 0 for different values of  
a

R
 and the 

same is tabulated in table 1. Strong and weak 

conditions including pressure and density for 

different values of  
a

R
 is tabulated in the next table. 

From the second table it is clear that, all models 

with 
a

R
≤ 0.31 comply with the requirement 

ρ(0) ≥ 3p(0)  in addition to ρ(0)  > 0 and 

p(0) > 0. However the models with 
a

R
> 0.46 are 

not physically viable as the requirement of weak 

condition ρ(0) − p(0)  >  0 is violated. Hence 

from table 1 it is noted that a charged spherical 

fluid could hold a maximum mass of 3.74 which 

corresponds to 
a

R
= 0.31. 
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In conclusion the static spheroidal space-

time can be expected to describe the interior of 

superdense fluid sphere in equilibrium 

accompanied by presence of charge. 
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