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ABSTRACT: 

This article describes a mathematical 

model of the circulatory system for the 

cardiovascular system and provides a basic 

framework for the mathematical 

representation of cumulative medical 

parameters such as total vascular area, 

blood volume, self-regulation, and effects on 

the upper and inner heart. In mathematical 

terms, linear dependencies, differential, 

integral and differential equations are used. 
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INTRODUCTION: 

The tone of the mathematical model of 

the degree of relation to the cardiovascular 

system and the circulatory system, which is 

related to time, is considered in the form of 

several specific areas of the cardiovascular 

system. When the experimental results, which 

reflect the volume tone and fluid dependence 

(blood fluidity), pressure and heart rhythm are 

reflected in the myocardial characteristics (in 

chronotope relations, dependence on velocity), 

the relationship between phases is shortened 

and weakened. 

 

METHODS: 

Consider the problem of blood flow in 

one vessel l cm long. 

Both  [1], we set the value of the model energy 

for this vessel as follows: 
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The first term corresponds to the kinetic energy 

of the liquid, and the second to the potential. For 

f (S) (1.4), the second term on the right-hand 

side is always positive, therefore ℰ1D (t) is 

positive for any t> 0. We have  

Lemma 1.1.1. For the system of equations (1.1) 

(recall that ϕ = 0), supplemented by the 

equation of state (1.3), the following energy 

equality is true: 
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(1.18) 

The proof of the lemma for the global 

blood circulation model written in the variables 

S and Q (1.15) can be found in [2,3]. Using the 

idea of this proof, we carry it out for our model 

(1.1). 

Evidence. We multiply the second equation of 

system (1.1) by the product ρuS¯ and integrate 

on the interval (0, l): 
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We transform each term in the resulting 

equality (1.19) separately. 

First term: 
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Second term: 
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The last transition was carried out using the 

first equation system (1.1) under the 

assumption that     (t, x, S, u ) = 0   

Third term: 

 
.

0
00

3 dx
x

uS
p

l
uSpdx

x

p
SuI

li

 









 
Using expression (1.20), as well as equation of 

state (1.3), we continue the transformation:
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Summing up I1, I2, I3, we obtain expression 

(1.18). 

If the function ψ (t, x, S, u ) defines viscous 

friction (1.2), R dx on the left-hand side of (1.18) 

(

  dxuuSxtS

l


0

,,,

is negative. Thus, under 

homogeneous boundary conditions (1.10) at the 

points x = 0 and x = l, energy dissipation occurs 

in the global circulation model:                                 
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The implementation of the global 

circulation model presented above, used in this 

work, was proposed and described in the article 

[4]. To solve the system of equations (1.1), grid-

characteristic methods are used [5]: first-order 

monotonic schemes and a hybrid scheme 

corresponding to the most accurate first-order 

monotonic scheme and the least oscillating 

second-order accurate scheme. 

Let the global blood flow problem be 

calculated up to the n-th moment of time. To find 

a solution to the system of equations (1.1) in a 

given vessel with M design points and grid size 

h at the (n + 1) th time step equal to τ, we use 

the following two-layer conservative difference 

scheme: 
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Choosing a first-order interpolation formula for 

calculation,   

we get: 
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where Ω is a matrix whose rows are left 

eigenvectors (1.8); Λ is a diagonal matrix of 

eigenvalues (1.7). 

The presented scheme is further used in 

numerical experiments. It has the minimum 

approximating viscosity under the stability 

condition on the class of explicit two-layer 

schemes of the first order of accuracy by 

positive approximation (1.5) [5]: 
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When calculating the global blood flow, 

the time step is variable and is determined by 

the formula: 

,
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where 
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belongs to the set of 

indices of all vessels the network in question.  

where the coefficients)  nnnn

2211 ,,   are 

calculated from the values at the points M,M-1 

(1,2) from the previous time step. 
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After discretization of the boundary 

conditions (1.11), (1.12) and (1.6), at each point 

of junction of the vessels, it is necessary to solve 

a system of nonlinear equations. For this, 

Newton's method is used. Numerical 

experiments have shown that Newton's method 

converges in a wide range of physiologically 

admissible parameters (different diameters, 

elastic properties of abutting vessels; different 

velocities and pressures) [6]. By identical 

transformations the dimension of the system 

can be halved: 

F(S) = Δf + RP = 0,                                     (1.25) 
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 R is a symmetric matrix that determines 

the hydraulic resistance for flows between 

vessels joining at a node, αkm, βkm are 

coefficients obtained by discretizing the 

compatibility condition for system (1.1) at the 

current time step, M is the number of vessels 

joining at a node, km is an index m- th vessel. 

Values from the previous time step are used as 

an initial approximation of the iterative process. 

Computational experiments have shown that 

such a choice of the initial approximation 

ensures the stable operation of the method. 

To investigate the quality of convergence 

of Newton's method in this problem, a series of 

computational tests was carried out on the 

vessels of the systemic circulation. The vascular 

system was represented by two overlapping 

graphs corresponding to the venous and arterial 

parts. Both networks consisted of 341 edges and 

335 vertices. Docking of veins and arteries was 

performed in 162 multinodules. At each node 

(multinode), the system (1.25) described above 

was solved by Newton's method. Several types 

of nodes were considered, differing in the 

number of incoming / outgoing ribs, their 

properties and blood flow intensity: the 

junction points of three vessels of the same or 

similar diameters (for example, 0.7 cm), but 

with different peak blood velocity in them (1-2 

cm / s, 30 -40 cm / s, 80-90 cm / s); junction 

points of three vessels of different diameters 

(for example, 1.8, 1.7 and 1 cm); the points of 

joining of four vessels with different diameters 

(for example, 1.4, 1.4, 0.7 and 0.7 cm). We also 

studied the points of junction of veins and 

arteries, that is, vessels with different elastic 

properties (c0 = 700 cm / s and c0 = 350 cm / s 

for the analytical form of the equation of state 

(1.3)). The elastic properties of the vessel wall 

were described both using analytical 

approximation (1.3) and using fiber and spring-

fiber models that reproduce the response of the 

wall of both a healthy vessel and in the presence 

of atherosclerotic plaques of various types or an 

installed cava filter (see the following sections 

and also [7-8]). In all these cases, Newton's 

method converged in 2-4 iterations with a given 

absolute accuracy of 10-6, in 3-4 iterations with 

an accuracy of 10-8 to 10-12. The most 

significant effect on the number of iterations 

required to achieve a given accuracy is exerted 

by the value of the velocity in the adjacent 

vessels.  By changing the function ϕ on the right-

hand side of the mass conservation law (1.1), 

one can take into account blood loss and wall 
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injuries. If the wound is punctate, it is assumed, 

for example, the following expression [7]: 

ϕ = −αS, 

where α is the point coefficient of blood 

loss intensity. The influence of various external 

forces can be taken into account by changing the 

function ψ in the law of conservation of 

momentum (1.1). Gravity, for example, in the 

simplest case is given by the formula [5] 

ψ = Gρcosα, 

where G is the gravitational constant, α is 

the angle between the axis of the vessel and the 

direction of the free fall vector. Vibration effects 

of high intensity originating from traffic in 

megacities, at work, etc. can cause disturbances 

in the work of the cardiovascular system and 

change the picture of blood flow. Their influence 

can be described not only by changing the 

equations of the system, but also using a model 

of air movement in the lungs, taking into 

account gas exchange [3]. 

The work of muscles as a muscle pump can be 

taken into account by changing the equation of 

state: 

   .2

0 tPSfcp add 
 

P add(t)  is some function that simulates 

muscle contractions. Changes in vascular 

stiffness c0 in certain situations simulates the 

processes of auto regulation. Since everything in 

the body is interconnected, cardiovascular 

activity is affected by other physiological 

systems, various organs and tissues. When 

creating a graph of vessels, you can specify the 

type of each vertex [4]: 

1.branch node; 

2. fabric; 

3.organ. 

In the first case, the previously described 

conditions (1.11) - (1.12) are used to join the 

solutions. The tissues are characterized by an 

extensive capillary network. Here, the size of 

blood particles is comparable to the size of 

blood vessels, and we can assume that blood 

flow is similar to the process of filtration of 

liquid through a porous medium, which obeys 

Darcy's law. For matching solutions at such a 

vertex, conditions (1.11) - (1.12) with suitable 

drag coefficients are also suitable, although 

more complex models can also be used, for 

example, [8]. To take into account the influence 

of the work of various organs on 

hemodynamics, the corresponding models are 

connected. An example of using the simplest 

kidney model is presented in [4]. This organ 

plays an important role in regulatory 

mechanisms.  

 

RESULTS: 

To achieve the goal, the following results 

are expected: 

1. In this area it is associated with the 

development of mathematical models and 

methods for the numerical simulation of blood 

flow for specific patients. In this regard, it is 

extremely important to require the use of 

parameters measured by regular diagnostic 

methods. 

2. To create software in this area based on non-

invasively measured data is of great practical 

importance in cardiology when analyzing 

indications for coronary artery stenting, since it 

avoids expensive intravascular intervention and 

provides fundamentally new opportunities for 

virtual analysis. 

 
Fig1.1. Algorithm of app via UML 
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Fig1.2. Algorithm of app via UML 

 

CONCLUSION: 

The described approach to constructing 

a numerical implementation makes it possible 

to divide the problem into independent blocks 

for calculating the flow in each vessel and at 

each point of their docking. Although the 

described quasi-one-dimensional model of 

global circulation provides only averaged 

characteristics of blood flow, it is quite 

convenient to use, since it does not require large 

computational costs and, generally speaking, 

allows real-time calculations on computers with 

sufficient performance. Another regulatory 

mechanism is carried out by the nervous 

system. Baroreceptors are located at certain 

points of the vessel walls. With an increase in 

pressure, the activity of these baroreceptors 

increases and impulses transmitted to the brain 

and other parts of the central nervous system 

cause a decrease in the strength and heart rate, 

a change in the number of capillaries filled with 

blood, an increase in the stiffness and cross-

section of the precapillary vessels (that is, a 

decrease in peripheral resistance). Assuming 

that the response to baroreceptor impulses 

occurs instantly, in practice, neural regulation 

can be implemented as follows [4]. A point is 

fixed at which constant pressure is required. 

With its increase or decrease, the length of the 

cardiac cycle changes, as well as the speed of 

propagation of the pulse wave and the 

resistance in the given vessels.  
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