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ANNOTATION: 

This article is considered as a review 

part for creating a mathematical model and 

software for the pathology of the circulatory 

system in the cardiovascular system. At the 

beginning, the cardiovascular system, the 

organ system, the pathology of the 

cardiovascular system, the international 

classifier of diseases of heart disease and 

blood vessels are studied, and further on 

what scientists studied blood circulation in 

the cardiovascular system and what 

problems were studied. 
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INTRODUCTION: 

There is a large number of studies of 

mathematical models of the heart [Lishchuk VA, 

1981; Zavalishin N. N. et al., 1986; Mostkova 

E.V., 1986; Desai M. D., Saxe na S. C., 1984; 

Mandel, 1984; Welkowitz W. 1984; Avanzolini 

G. et al., 1985; Coleman T. G., 1985; Linkens A. 

D., 1985; Larnard D. J., 1986; Peterson N. et al., 

1986; Ohayon J., Oddou C „1987] *, including the 

author of this work [Lishchuk VA et al., 1965, 

1980; Lishchuk VA, 1967-1978], therefore, the 

description of cardiac activity can be performed 

only to the extent necessary to include the 

model of the heart in the general description of 

the cardiovascular system. 

The circulatory system is closed and 

consists of the heart, arteries, veins and 

capillaries. We believe that cardiac activity is 

reproduced by a dynamic model of a four-

chambered heart. Each chamber is associated 

with a spherical reservoir with elastic walls, 

then a system is composed of the equation of 

blood flow in the chambers of the heart, the 

laws of conservation of mass and Poiseuille. A 

detailed description of the model can be found, 

for example, in [1]. Networks of arteries and 

veins of the large and pulmonary circulation are 

presented in the form of four columns. Each of 

them docks with one of the chambers of the 

heart. Vessels are considered to be elastic tubes, 

the ratio of diameter to length of which is rather 

small. Let us denote by S section of the vessel; u- 

cross-section averaged speed; p - transmural 

pressure; t - time; x- coordinate along the vessel 

ρ - blood density; ϕ,ψ -  specified functions.  

 

METHODS: 

Blood is considered a viscous 

incompressible fluid and its flow in each one-

dimensional region can be described by the 

laws of conservation of mass and momentum 

[2]: 
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x ∈ [0,l], t ∈ [0,T], where l- vessel length, 

T is the calculation time. The function ϕ can be 

used to simulate the inflow / outflow of blood 

(wall injuries, blood loss), and with the function 

ψ, the effects of external forces (friction, gravity, 
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etc.). In this work, we put ϕ = 0, and ψ will set 

the viscous friction and be determined by the 

formula [3]: 
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Where S


is the cross-sectional area of the 

vessel at p = 0; d is the tube diameter; µ is the 

coefficient of blood viscosity. 

System (1.1) is closed by the equation of 

state characterizing the elastic properties of the 

vessel walls: 
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c0- - the speed of propagation of small 

disturbances. The function f (S) is chosen in this 

way, according to [4]. Generally speaking, it can 

be specified in various ways [5,6.7], while its 

graph should be a monotonic S-shaped curve. 

The system of equations (1.1) is of 

hyperbolic type; therefore, at the boundary 

points of each vessel, the characteristic curves 

outgoing from the region of integration impose 

conditions on the solution. These conditions are 

also called compatibility equations, and to 

derive them, we represent system (1.1) in 

divergent form: 
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Where  V = {S, u}, F = {Su, 
2u

 / 2 + p / 

}, g = {ϕ, ψ}.  Ω i  (i = 1,2)         left eigenvectors of 

matrix (1.1) 
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form of system (1.1) is as follows: 
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λi — the eigenvalues of the matrix are the 

total derivative along the i-th 

characteristic curve. The eigenvalues are 

calculated from the equation det (A - λE) = 0, 

where E is the identity matrix, and are equal to 
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Explicit expression for own values: 
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i = 1,2 In addition, from the condition ωi(Ak − 

λiE) = 0, which the left eigenvectors ωi satisfy, 

one can find their analytic form: 
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 - the local velocity of propagation of 

elastic waves in the medium (the velocity of 

sound). The work considers only subsonic 

currents (u <c), characteristic of blood 

circulation in normal conditions and in most 

pathologies. It can be seen from formula (1.7) 

that each point on the edge, including the 

boundary point, leaves two characteristics. In 

the cases under consideration, one of them has 

a positive inclination to the Ox axis, the other is 

negative. The characteristics emerging from the 

region of integration at the ends of the vessel 

specify conditions (1.6) in them, with i = 1 at the 

inlet to the vessel and i = 2 at the outlet. Thus, 

the solution of system (1.1) at each boundary 

point must satisfy the compatibility equation 

(1.6) and some other additional condition. 

When analyzing hyperbolic systems of 

equations, characteristic variables are often 

used, they are also Riemann invariants. These 

parameters W1 and W2 are constant along the 

characteristic curves and have the following 

expression:  
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From this we obtain the total derivative for the 

characteristic variables:  
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and then, integrating, we get an explicit 

expression for them: 
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The constant C can be taken equal to zero, based 

on the initial data: Wi = 0 for u = 0 and S = Ŝ . 

Finally, we obtain: Conditions (1.6) are 

equivalent to the conditions:  

Wi(t) = gi(t),   (1.10) 

where gi (t) are given functions. As already 

mentioned, when solving system (1.1) at the 

boundary points of condition (1.10) along the 

characteristics leaving the region of integration, 

it is necessary to take into account (for i = 1 at 

the entrance to the vessel and for i = 2 at the exit 

from it). If we add to them the conditions (1.10) 

for the incoming characteristics (for i = 2 at the 

entrance to the vessel and for i = 1 at the exit 

from it), we get a correctly posed problem 

describing the blood flow in one vessel. Further 

in the dissertation, hemodynamics in the entire 

circulatory system is studied. In order to sew 

the solutions of equations (1.1) on different 

edges at the junction points of the vessels, we 

require the fulfillment of the laws Poiseuille and 

mass conservation: 
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Here k = 1, ..., K, where K is the number of 

abutting vessels; pnode - pressure at the 

docking point; εk = −1 and xk = 0 if the vessel 

leaves this point, and εk = 1 and xk = lk otherwise 

(lk is the length of the k-th vessel); Rk is the 

resistance of the vessel in this area. Consider 

the boundary conditions at the junction points 

of the vessels with the heart. Only one vessel 

enters / exits each chamber of the heart. Let the 

pressures at the ends of these vessels and in the 

corresponding chambers be equal. This 

condition, supplemented by a system of 

equations describing the work of the heart [8], 

sets the required set of boundary conditions. 

The arterial and venous parts of the circulatory 

system are connected through a network of 

arterioles, venules, and capillaries. The 

construction of a graph of vessels is impossible 

and unnecessary here. In addition, the sizes of 

these elements of the vascular network are 

comparable to the sizes of blood cells, so that 

the blood flow itself can not  be described in 

terms of Newtonian fluid. For hemodynamic 

modeling, it is essential that the microvascular 

place creates hydrodynamic resistance, and, 

consequently, a pressure drop between arteries 

and veins. This pressure drop can be ensured by 

requiring the fulfillment of Poiseuille's law 

(1.11) with suitable values of the parameters at 

the interface between arteries and veins. Thus, 

in this work, the microvascular place is not 

described; instead, at the junction of arteries 

and veins, a standard system of boundary 

conditions (1.11) - (1.12) with suitable 

resistance values is used. In addition, to 

initialize the global circulation model, it is 

necessary to set the initial conditions. They can 

be chosen quite arbitrarily from the 

physiologically acceptable range, for example, 

S(0,x) = Ŝ           (1.13) 

u(0,x) = 0.              (1.14) 

Remark 1.1.1. This mathematical model is 

obtained directly from conservation laws 
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written in integral form. However, it can be 

derived in other ways, for example, by 

integrating the Navier-Stokes equations over 

the cross section of the vessel [73]. This results 

in the following system: 
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where Q = Su is the fluid flow through the given 

section; α - coefficient correcting the pulse flux; 

Kr is a function describing friction. 

Let us rewrite the second equation in (1.15) 

with α = 1 in the variables S and u: 
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Assuming that S, u  H
1
([0, T] × [0, l]), we 

carry out equivalent transformations: 
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Considering the first equation (1.15), the 

expression in parentheses is zero. Divide the 

rest of the equality by S and put  
S

uK r   

Under these conditions, the systems of 

equations (1.1) and (1.15) are equivalent. 

 

RESULTS AND CONCLUSION: 

The described approach to constructing 

a numerical implementation makes it possible 

to divide the problem into independent blocks 

for calculating the flow in each vessel and at 

each point of their docking. 

Although the described quasi-one-

dimensional model of global circulation 

provides only averaged characteristics of blood 

flow, it is quite convenient to use, since it does 

not require large computational costs and, 

generally speaking, allows real-time 

calculations on computers with sufficient 

performance. The simplicity of the model makes 

it possible to complicate it and thereby take into 

account the influence of many factors. 

 
Pic.1.1 Block Scheme of program UML  

 

 
Pic.1.2. Algorithm of  UML  

Analysis of modern works on modeling 

blood flow using various averaging methods 

shows that such methods are capable of giving 

an adequate mathematical description of 

hemodynamics in a certain approximation. To 

achieve the goal, the following results are 

expected: 

1. Analysis of the results of a healthy person and 

the general type of all cardiovascular diseases in 

a narrow area and fully averaged over space 

models allow to adequately describe the 

dynamics of cardiac output and integral 

parameters of blood flow throughout the body. 
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Stationary distributed models allow one to 

describe quasi-stationary pressure 

distributions in the microvascular place. 

2. One-dimensional dynamic models 

successfully cope with the description of 

processes in the networks of large and medium 

vessels. Their integration with averaged and 

three-dimensional models makes it possible to 

simulate blood flow in a closed circulatory 

network, including hundreds and thousands of 

vascular segments. 
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