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ANNOTATION: 

 The technology for calculating the 

stress-strain state of elastoplastic bodies 

with a cavity or a cavity, using the developed 

software, is based on the ideas of 

algorithmization, computational 

experiment and modular programming. 
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Introduction: 

In the use of many modern structures, 

the diffusion of materials into the plastic field 

occurs in their most loaded areas, which also 

leads to a number of additional effects under the 

influence of variable loads, such as the 

Baushinger effect, i.e. secondary plastic 

deformations; -shows softening and anisotropy, 

leads to deformation aging, accumulation of 

damage and the spread of cracking [1-5]. 

 

RESULTS AND DISCUSSION: 

In the n-th half cycle of loading the stress 

tensor and deformation components  n

ij  and 

we define with 
 n

ij . 

According to the equations of the theory 

of small elastoplastic deformations, the 

following relationship between stresses and 

strains under alternating loads occurs [2]. 

 
 

 
 n

ijn

u

n

un

ij Э
3

2
S




                                                  (1) 

   
,K

nn                                                   (2) 
    n

u

n

u                                                    (3) 

 

In the linear approximation of the deformation 

diagrams we obtain the following (3)                                            
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In the case of the generalized Mazing 

principle ln=l, esn=anss, The scale coefficient is 

determined experimentally, and for hardening 

and softening materials can be expressed in the 

form of the following expression: 

an=Q(n–1)k                                              (5) 

and also for cyclic anisotropic materials 
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where Q, Q*, k –is  material changes. 

When using Gusenkov-Schneiderovich 

deformation diagrams [4] esn=2es, ln=1–gn, here 

gn is determined as follows: 

for cyclic hardening materials 
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for cyclic softening materials 
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If the accumulated damage is taken into 

account, ln=l  
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The damage function is determined by the h-

kinetic equation: 
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if h(0)=0, h(N)=1, where N is the number of 

half-cycles before the boundary condition 

(injury) occurs. 

The equations given above include equilibrium 

equations, boundary conditions, and Cauchy 

relations: 

if  n

ij ,  n

ij  if found for any n, then the voltages 

 n
ij  and deformations  n

ij , sought are 

determined by the following formula: 
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If Mazin's generalized principle is used, 

according to VV Moskvitin's theorem on 

variable loads [2],  n

ij ,  n

ij  values are the 

corresponding values for the first boot sij, eij is 

determined by the limit of their leakage ss  is to  

anss  and external power is achieved by 

switching to Fi, Ri        n

i

1n

i

1n
FF1   , 

      n

i

1n

i

1n
RR1   . 

Provides automation of the process of 

stress-strain state of the spatial structure on the 

basis of the finite element method and the 

Ilyushin-Moskvitin method of elastic solutions 

using advanced software [3,6]. 

In the process of creating this system, the main 

focus was on the following principles: 

1) The principle of a systematic approach; 

2) Taking into account the prospects for the 

development of technical means of computer 

technology; 

3) The principle of the optimal combination of 

design and automation of the user experience; 

4) The principle of flexibility, stability and 

reliability; 

5) The principle of creating algorithmic systems. 

By the nature of the functions performed, 

management programs perform two groups of 

two operations: 

 1) the formation of logical operations and 

variable plastic problem associated with the 

input and analysis of operational data, which 

formalized a meaningful description of the 

problem; 

  2) numerical solution of boundary or 

optimization problems, the implementation of 

computer algorithms and the organization of 

the calculation of spatial structures on the state 

of stress-strain.  

The operation of the control modules begins 

with filling in the order form and entering the 

operational data in their subsequent editing, 

followed by their editing. The order form has 9 

sections in addition to the official user details: 

1) -Calculation accuracy and established 

limitations; 

2)  - Geometry of the projected object .; 

3)  - The scheme of division of the object into 

blocks; 

4)  - Placement of load-bearing elements of 

each block; 

5) - Operating mode of each load-bearing 

element; 

6)  - The material of the supporting element; 

7)  -Mechanical properties of the material of 

each load-bearing element; 

8)  - External forces applied to the load-bearing 

element; 

9)  - Boundary conditions of the load-bearing 

element. 

An example of the application of the 

software package is the analysis of the stress-

strain state of a right-angled parallelepiped as a 

console and a hollow right-angled 

parallelepiped as an example [4]. 

The problem is solved by the method of finite 

elements, the division of the considered area 

into pieces is solved by means of is oparo metric 

finite elements in the form of octagonal 
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hexagons. The sampling parameters and the 

characteristics of the system of linear algebraic 

equations are determined by the following 

values: number of finite elements-1000, number 

of nodes-1331, system order-3993, half-width 

of the tape-402, number of divisions along the 

axes -11,11,11. 

Figure 1 shows three types of elastic-

plastic spheres: elastic, incomplete, and 

complete plastic, when the number of cycles is k 

= 1,3,5,9, and the coordinate points are x = 2.5, u 

= 10, and z = 40. 

 
 

Figure 1 ( - elastic, - incomplete, and 

- complete plastic) 

For comparison, Table 1.2 shows the maximum 

values of the values calculated for the 

parallelepiped, respectively, according to the 

generalized Mazing principle and the 

generalized Gusenkov-Schneiderovich cyclic 

deformation diagram.. 

  

According to the generalized Mazing-Moskvitin 

principle (B-96) Table  
К 

k  
( )k

v  
( )k

w  
( )k

x  
( )k

y  
( )k

z  

( )k

u  

1 1 -0,61749 0,10211 4518,0 4524,8 6618,9 2322,7 

2 

2,080 

1,11973 -0,18588 -8345,8 -8355,1 -

12631,3 

4734,0 

3 

2,140 

1,03414 -0,17241 -7807,1 -7813,1 -

12154,1 

4798,5 

4 

2,190 

1,03414 -0,17241 -7807,1 -7813,1 -

12154,1 

4798,5 

5 

2,220 

0,94482 -0,15849 -7191,6 -7194,0 -

11631,0 

4894,9 

6 

2,240 

0,91737 -0,15422 -7007,7 -7008,9 -

11467,8 

4916,0 

7 

2,260 

0,89819 -0,15124 -6871,6 -6871,8 -

11356,7 

4941,8 

8 

2,279 

0,88073 -0,14853 -6744,9 -6744,2 -

11254,0 

4966,5 

9 

2,290 

0,87094 -0,14702 -6672,4 -6671,0 -

11195,5 

4980,8 

  

 

  

 

      

К ( )kv  
)(kw  

( )k

x  
( )k

y  
( )k

z  

1 -0,50224 0,08377 3827,9 3830,3 6012,4 

2 0,53190 -0,08864 -3979,2 -3982,7 -6141,7 

3 -0,50224 0,08377 3827,9 3830,3 6012,4 

4 0,44258 -0,07472 -3363,7 -3363,6 -5618,5 

5 -0,47479 0,07950 3644,0 3645,3 5849,3 

6 0,42340 -0,07174 -3227,6 -3226,5 -5507,4 

7 -0,45733 0,07679 3517,3 3517,7 5746,6 

8 0,41362 -0,07023 -3155,1 -3153,4 -5448,9 

 

According to the generalized Gusenkova -

Shneyderovich principle (B-96) Table 2 
К 

k  
( )k

v  

( )k

w  

( )k

x  

( )k

y  

( )k

z  

( )k

u  

1 

0,950 

-

0,61749 0,10211 4518,0 4524,8 6618,9 2322,7 

2 

0,920 1,03933 

-

0,17390 -7815,7 -7820,2 

-

12207,4 4845,1 

3 

0,897 0,94285 

-

0,15901 -7170,3 -7170,2 

-

11675,2 4962,2 

4 

0,881 0,90013 

-

0,15247 -6860,0 -6857,6 

-

11442,8 5043,0 

5 

0,868 0,86544 

-

0,14714 -6615,2 -6611,0 

-

11250,2 5096,6 

6 

0,858 0,84610 

-

0,14418 -6469,4 -6464,1 

-

11147,9 5141,7 

7 

0,848 0,82853 

-

0,14149 -6335,4 -6329,0 

-

11055,6 5184,8 

8 

0,840 0,81076 

-

0,13875 -6210,1 -6202,7 

-

10955,1 5209,6 

9 

0,833 0,80062 

-

0,13720 -6130,5 -6122,5 

-

10903,4 5238,4 

К ( )kv  
)(kw  

( )k

x  
( )k

y  
( )k

z  

1 

0.61749 

-

0.10211 -4518.0 -4524.8 -6618.9 

2 -

0.42184 0.07179 3297.7 3295.4 5588.6 

3 

0.52101 

-

0.08723 -3872.6 -3874.8 -6086.6 

4 -

0.37912 0.06525 2987.4 2982.8 5356.2 

5 

0.48632 

-

0.08189 -3627.8 -3628.2 -5894.1 

6 -

0.35978 0.06229 2841.6 2835.9 5253.9 

7 

0.46875 

-

0.07920 -3493.8 -3493.2 -5801.7 

8 -

0.34201 0.05955 2716.4 2709.6 5153.4 

9 

0.45861 

-

0.07765 -3414.2 -3412.9 -5750.0 

 

The calculation was performed with the 

following data: ,15,1,4,0  À  Gт=0,05, 
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Q=2,02,  ǽ=0,03. The construction material is 

D-16T cyclic reinforced aluminum alloy. 

The conditions for the emergence of secondary, 

tertiary and other plastic fields are as follows 

sn

k

u  )( ,  where n  is is the scale coefficient. 

 

CONCLUSION: 

Comparing the calculated values, we 

confirm experimentally [2] that the difference 

between the results obtained from the two 

diagrams of cyclic deformation is small (about 

5-10%) and reflect the main properties and 

characteristics of low cyclic load resistance of 

structural elements, taking into account 

hardening-softening and cyclic anisotropy [5-6]. 
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