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ABSTRACT: 

We consider the Vaidya Tikekar 

metric; 3- dimensional space with time (t) 

being constant, in a super dense star which is 

spheroidal. We report a static general 

solution (in terms of hyper-geometric series) 

to Einstein's field equations using Vaidya-

Tikekar metric. 
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INTRODUCTION: 

General relativity theory incorporates 

gravity as a phenomenon intrinsically related 

with the geometry of space-time and succeeds in 

arriving at a deeper understanding of the space-

time associated with distribution of physical 

fields of cosmological and astrophysical 

significance. Especially after the discovery of 

pulsars which are believed to be rotating 

neutron stars, there is lot of interest in using 

general relativity theory to study the interior 

structure of the space-times of superdense 

configuration of matter with matter densities 

exceeding the density of nuclear matter. Use of 

general relativity theory in understanding the 

final stages of evolution of a star such as neutron 

star and black hole is considered to be 

unavoidable. The effective mass of gravitational 

field as obvious from the Einstein’s field 

equations of general relativity enforces 

constraints in obtaining simple exact solutions 

which may function as models of relativistic 

stars. Lack of dependable knowledge about the 

properties of central core area of comparatively 

compact stars is another hindrance which 

warrants of a general nature. Einstein's field 

equations in the theory of general relativity 

represents a collection of partial differential 

nonlinear equations in four separate variables. 

This arduous system of nonlinear partial 

differential equations is hard to integrate, 

despite of it being considered as a self-coupled 

integral equation.  Accordingly, it is desired to 

have some analytic solutions at hand, which may 

serve as easily surveyable models for these stars 

[Tolman (1939)]. Even then, as one cannot have 

believable knowledge about the behaviour of 

matter at the core region of neutron star under 

extreme conditions, we can warranty only the 

most general assumptions. If similar closed form 

solutions [Tolman (1939); Adler (1974); 

Leibovitz (1969); Buchdahl (1959)] adhere to 

certain general fundamental properties 

expected from fluids at ultra-high masses and 
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pressure; then it will be of astrophysical 

significance. 

Tikekar and Vaidya (1982) have 

established that the space-times with t being 

constant having the geometry of a 3D-spheroid 

characterized by two parameters K measuring 

the oblateness and R showing the spherical 

nature of the spheroid are useful in developing 

easily surveyable relativistic design for super 

dense stars such as neutron stars. It is 

demonstrated that these space-times can be 

utilized to establish static models characterizing 

the field of gravity in the interior of superdense 

condensation matter like neutron stars and 

white dwarfs. The physical soundness of the 

class of models by Tikekar and Vaidya was 

examined by Knutsen (1988) and concluded that 

these models are stable with respect to 

infinitesimal radial beats. Tikekar (1990) again 

reported another class of models with above 

geometry. References shows that only a limited 

number of analytic closed form solutions of 

Einstein's field equations for static spherical 

distributions of material can be useful as easily 

significant modes for superdense stars, it is 

necessary to investigate the suitability of other 

particular classes of models in this set up. 

 This paper deals with the study of 

spheroidal space time and its suitability to 

represent the interior of compact fluid spheres in 

equilibrium. The space times are characterized 

by two curvature parameters R and K. The 

requirement that the space time of a matter 

distribution in equilibrium be spheroidal 

determines the law of variation of density of 

matter in the configuration and the problem of 

solving a second order linear differential 

equation. Maharaj and Leach (1996) and 

Mukherjee et al. (1997) have discussed methods 

for solving this differential equation. We have 

discussed two methods for obtaining general 

solution to Einstein's field equations one of 

which is similar to the one given by Maharaj and 

Leach (1996). Our other method consists of 

converting this differential equation to hyper 

geometric function and hence reaching out with 

an exact general solution to Einstein's field 

equation. 

 

SPHEROIDAL SPACE TIME: 

We consider a four-dimensional 

Euclidean space with metric 

𝐝𝛔𝟐 = 𝐝𝐱𝟐 + 𝐝𝐲𝟐 + 𝐝𝐳𝟐 + 𝐝𝐭𝟐 (𝟏) 

A three dimensional immersed in the four-

dimensional Euclidean space will have the 

Cartesian equation: 

𝐰𝟐

𝐛𝟐
+

𝐱𝟐 + 𝐲𝟐 + 𝐳𝟐

𝐑𝟐
= 𝟏 (𝟐) 

The parameterization, 

x = Rsinαcosθcosφ 

y = Rsinαsinθsinφ 

z = Rsinαcosθ 

w = bcosθ 

of the three spheroid leads to  
𝐝𝛔𝟐 = (𝐑𝟐𝐜𝐨𝐬𝟐𝛂 + 𝐛𝟐𝐬𝐢𝐧𝟐𝛂)𝐝𝛂𝟐 + 𝐑𝟐𝐬𝐢𝐧𝟐𝛂(𝐝𝛉𝟐 +

𝐬𝐢𝐧𝟐𝛉 𝐝𝛗𝟐) (𝟑)
 

as the metric on the three-dimensional spheroid. 

 

Introducing a new variable r = Rsinθ the metric 

assumes the form, 

𝒅𝝈𝟐 = −
𝟏 −

𝑲𝒓𝟐

𝑹𝟐

𝟏 −
𝒓𝟐

𝑹𝟐

𝒅𝒓𝟐 − 𝒓𝟐(𝒅𝜽𝟐 +

𝒔𝒊𝒏𝟐𝜽 𝒅𝝋𝟐) (𝟒)

 

where 𝐾 = 1 −
𝑏2

𝑅2
   represents the space-time in 

the interior of a spherical distribution of matter 

at rest.  

 

The form of this metric indicates that  

1. The spheroidal 3-space is spherically 

symmetrical. 

2. The metric is regular and positive definite 

at all points 𝑟 <  𝑅. 

3. For 𝐾 =  1, the spheroidal 3-space 

degenerates into a flat space. 

4. For 𝐾 =  0, the spheroidal 3-space 

degenerates into a sphere.  
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DISTRIBUTION OF MATTER IN SPHEROIDAL 

SPACE TIME: 

Tikekar and Vaidya have shown that the 

solution of Einstein’s filed equations describing 

matter distribution on static spheroidal space 

time are highly relevant in describing the 

interior pace time of superdense stars. A 

relativistic model of a superdense star has been 

reported by Tikekar (1990) and certain general 

aspects of such models have been investigated 

by Knutsen (1988).  Maharaj and Leach (1996). 

We shall discuss here certain general aspects of 

geometrical and physical significance of matter 

distribution on spheroidal space-time and 

general methods for obtaining models of 

superdense spherical configurations of matter in 

equilibrium on the background of spheroidal 

space-times. A 'C' program useful for obtaining 

information about various parameters of 

physical relevance associated with models 

corresponding to specific choices of certain 

parameters of geometrical and physical 

relevance will also be given. Looking at Tikekar 

and Vaidya's (1982) approach, we consider the 

static spherically symmetric space-time with the 

metric, 

𝒅𝝈𝟐 = −
𝟏 −

𝑲𝒓𝟐

𝑹𝟐

𝟏 −
𝒓𝟐

𝑹𝟐

𝒅𝒓𝟐 − 𝒓𝟐(𝒅𝜽𝟐 + 𝒔𝒊𝒏𝟐𝜽 𝒅𝝋𝟐) + 𝒆𝝂(𝒓)𝒅𝒕𝟐 (𝟓) 

Considering the physical content of the space 

time to an ideal fluid having associated energy 

momentum tensor as, 

𝑻𝒊𝒋 = (𝝆 +
𝒑

𝒄𝟐
) 𝒖𝒊𝒖𝒋 − (

𝒑

𝒄𝟐
) 𝒈𝒊𝒋 (𝟔) 

 

where ρ represents matter density and p the 

fluid pressure. Representing the unit four 

velocity field of matter mentioned as 𝑢𝑖 =

(0,0,0, , 𝑒−
𝜈

2), 

Einstein’s field equations  

𝑹𝒊𝒋 −
𝟏

𝟐
𝑹𝒈𝒊𝒋 =

𝟖𝝅𝑮

𝒄𝟐
𝑻𝒊𝒋 (𝟕) 

reduces to the system of three equations given 

by 

𝟖𝝅𝝆 =

𝟑(𝟏 − 𝑲)
𝑹

[𝟏 −

𝑲
𝟑

𝒓𝟐

𝑹𝟐 ]

[𝟏 −
𝑲𝒓𝟐

𝑹𝟐 ]
𝟐

  (𝟖)
 

𝟖𝝅𝒑 = [
𝝂′

𝒓
+

𝟏

𝒓𝟐
]

[𝟏 −
𝒓𝟐

𝑹𝟐]

[𝟏 −
𝑲𝒓𝟐

𝑹𝟐  ]
 −

𝟏

𝒓𝟐
 (𝟗) 

and 

𝒄 [𝟏 −
𝑲𝒓𝟐

𝑹𝟐 ] [𝝂′′ +
𝝂′𝟐

𝟐
−

𝝂′

𝒓
] −

𝟏−𝑲

𝑹𝟐
(𝒓𝝂′ + 𝟐) +

𝟐(𝟏−𝑲)

𝑹𝟐 [𝟏 −
𝑲𝒓𝟐

𝑹𝟐 ] = 𝟎 (𝟏𝟎)

Here and in what follows an overhead prime 

mentions differentiation with respect to radial 

variable r. In our proposal the prevailing choice 

of state of matter is replaced with the option of 

the spheroidal geometry which demonstrate the 

rate of change with respect to r. Equation (8) 

displays that the density of the fluid is figured 

out by the curvature of the physical 3-space. The 

field equation (9) presents the variation of 

pressure with r when ν is chosen to satisfy 

Equation (10). It is shown by Tikekar (1990), 

that the relativistic condition for hydro static 

equilibrium is: 

𝟏

𝒄𝟐
(

𝒅𝒑

𝒅𝒓
) = −

(𝝆 +
𝒑
𝒄𝟐)

𝒓𝟐
[
𝒎(𝒓) +

𝟒𝝅𝑮𝒑
𝒄𝟒 𝒓𝟑

(𝟏 −
𝟐𝒎

𝒓 )
] (𝟏𝟏) 

This usually replaces the field equations (10) 

with the explicit form to, 

𝟏

𝒄𝟐
(

𝒅𝒑

𝒅𝒓
) = −

[𝟏 −
𝑲𝒓𝟐

𝑹𝟐 ]

[𝟏 −
𝒓𝟐

𝑹𝟐]
[
𝟒𝝅𝑮𝒑𝒓

𝒄𝟒
+

(𝟏 − 𝑲)𝒓

𝟐𝑹𝟐 [𝟏 −
𝑲𝒓𝟐

𝑹𝟐 ]
]

(𝝆 +
𝒑

𝒄𝟐
) (𝟏𝟐)

 

This law points out that the pressure 

gradient coupled with the repulsive force make 

up for the gravitational force of attraction of 

matter and thus establishes equilibrium. We 

shall examine how the law of variation of the 

density given by Equation (8) facilitates us to 

assess the mass and the radius of the 

configuration 
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STATIC GENERAL SOLUTION OF EINSTEIN’S FIELD 

EQUATIONS: 

Adopting new variable 𝜓  and 𝑧2 defined to be as, 

 𝝍 = 𝒆
𝝂
𝟐   

𝒛𝟐 = 𝟏 −
𝒓𝟐

𝑹𝟐
 (𝟏𝟑) 

and substituting into the second order, nonlinear 

ordinary differential equation (10), resulting in a 

second order linear differential equation of the 

form, 

(𝟏 − 𝑲 + 𝑲𝒛𝟐)
𝒅𝟐𝝍

𝒅𝒛𝟐
− 𝑲𝒛

𝒅𝝍

𝒅𝒛
−  +𝑲(𝑲 − 𝟏). 𝝍 = 𝟎 (𝟏𝟒) 

Defining an independent variable 𝒖𝟐 =
𝑲

𝑲−𝟏
𝒛𝟐,   𝑲 < 𝟎   changes the differential 

equation (14) to the form 

(𝟏 − 𝒖𝟐)
𝒅𝟐𝝍

𝒅𝒖𝟐
+ 𝒖

𝒅𝝍

𝒅𝒖
+ (𝟏 − 𝑲)𝝍 = 𝟎 (𝟏𝟓) 

used by Tikekar and Vaidya (1982). They had 

derived a series solution for this equation 

considering the form 𝝍 = ∑ 𝑨𝒌𝒖𝒌  which leads to 

a recurrence relation for the coefficients 𝐴𝑘    as 

(𝒏 + 𝟏)(𝒏 + 𝟐)𝑨𝒏+𝟐 = (𝒏𝟐 − 𝟐𝒏 + 𝑲 − 𝟏)𝑨𝒏. 

If the parameter K has value such that the 

equation,  𝑛2 − 2𝑛 + 𝐾 − 1 = 0 admits integral 

values of 𝑛 as solutions, either of the two sets 

(𝐴0 , 𝐴2, 𝐴4, … ) 𝑜𝑟 (𝐴1, 𝐴3, 𝐴5 … ) contains finite 

number of elements and the corresponding 

terms in the solution series constitute a finite 

polynomial. It can be verified that, for it to be in 

the range 𝐾 <  1, the simplest value of  𝐾 𝑖𝑠 –  2 

which corresponds to 𝑛 =  3.  

For 𝐾 =  −2, Tikekar and Vaidya had derived 

the following solution, 

𝝍 = 𝑨𝟎 (𝟏 −
𝟑

𝟐
𝒖𝟐 +

𝟑

𝟖
𝒖𝟒 … ) + 𝑨𝟏𝒖 (𝟏 −

𝟐

𝟑
𝒖𝟐) 

Observing the infinite series with 𝐴0 as the 

coefficient, the closed form solution for 𝐾 =  −2 

will be 

𝒆𝒙𝒑 (
𝝂

𝟐
) = 𝝍 = 𝑨𝒛 (𝟏 −

𝟒

𝟗
𝒛𝟐) + 𝑩 (𝟏 −

𝟐

𝟑
𝒛𝟐)

𝟑
𝟐

 

Closed-form solutions of Equation (11) have also 

been obtained for 𝐾 =  −7, −14, −23 … But this 

method can give solution only to certain values 

of 𝐾 which satisfies the recurrence relation. 

There arises the importance of an exact general 

solution applicable for all values of 𝐾. 

Further considering the new independent 

variable 𝑥 =  𝑢2, the differential equation (15) 

can be written in the form of a hyper-geometric 

equation as, 

𝒙(𝟏 − 𝒙)
𝒅𝟐𝝍

𝒅𝒙𝟐
+

𝟏

𝟐

𝒅𝝍

𝒅𝒙
+

𝟏 − 𝑲

𝟒
𝝍 = 𝟎 (𝟏𝟔) 

The function ψ which satisfies the above 

equation can be equated to, 

𝝍 =  𝒆
𝝂
𝟐 = 𝑨𝑭 [

−𝟏 + √𝟐 + 𝑲

𝟐
,
−𝟏 − √𝟐 + 𝑲

𝟐
,
𝟏

𝟐
, 𝒙] +

𝑩𝒙
𝟏
𝟐

  𝑭 [
√𝟐 − 𝑲

𝟐
,
−√𝟐 − 𝑲

𝟐
,
𝟑

𝟐
, 𝒙] (𝟏𝟕)

 

where 𝐹[𝑎, 𝑏, 𝑐, 𝑥] is the hyper-geometric 

function with its arguments 𝐴 and 𝐵 which are 

arbitrary constants. The closed form solutions 

that can be obtained from (17) which can be 

divided into two classes based on the values of 𝐾. 

The solution 𝜓 for the equation (17) for both the 

cases of 𝐾 can be determined. 

 

Case 1: 𝑲 =  𝟐 −  (𝟐𝒏𝟐 −  𝟏), 𝒏 = 𝟐, 𝟑, 𝟒 …  

𝝍 =  𝒆
𝝂
𝟐 = 𝐀𝐅 [

−𝟏 + √𝟐 − 𝐊

𝟐
,
−𝟏 − √𝟐 − 𝐊

𝟐
,
𝟏

𝟐
, 𝐱] +

𝐁𝐱
𝟏
𝟐

  (𝟏 − 𝐱)
𝟑
𝟐 𝐅 [

𝟑 + √𝟐 − 𝐊

𝟐
,
𝟑 − √𝟐 − 𝐊

𝟐
,
𝟑

𝟐
, 𝐱] (𝟏𝟖)

 

 

Case 2: 𝐊 =  𝟐 −  𝟒𝐧𝟐, 𝐧 = 𝟏, 𝟐, 𝟑, 𝟒 …  

𝛙 =  𝐞
𝛎
𝟐 = 𝐀(𝟏 − 𝐱)

𝟑
𝟐 𝐅 [

𝟐 + √𝟐 − 𝐊

𝟐
,
𝟐 − √𝟐 − 𝐊

𝟐
,
𝟏

𝟐
, 𝐱] +

𝐁𝐱
𝟏
𝟐

   𝐅 [
√𝟐 − 𝐊

𝟐
,
−√𝟐 − 𝐊

𝟐
,
𝟑

𝟐
, 𝐱] (𝟏𝟗)

 

 

The above solution can be used in general 

for all K <  0 as far as numerical calculations are 

concerned. As we have reached the solution for 

the Einstein’s field equation without making any 

assumption on the equation of state for its 

matter content, it is required to examine the 

physical plausibility of the solution thus 

obtained. 
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