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ABSTRACT: 

This article describes a mathematical 

model of the circulatory system for the 

cardiovascular system and provides a basic 

framework for the mathematical 

representation of cumulative medical 

parameters such as total vascular area about 

three-dimensional model of the flow of an 

incompressible viscous Newtonian fluid, 

blood volume, self-regulation, and effects on 

the upper and inner heart. In mathematical 

terms, linear dependencies, differential, 

integral and differential equations are used. 

Keywords: linear dependence, integral-

differential equations, logical-dynamic 

equations, general vascular zone, self-

regulation, influence on the upper and 

working heart, medical parameters. 

 

INTRODUCTION: 

The tone of the mathematical model of 

the degree of relation to the cardiovascular 

system and the circulatory system of three-

dimensional model of the flow of an 

incompressible viscous Newtonian fluid, which 

is related to time, is considered in the form of 

several specific areas of the cardiovascular 

system. When the experimental results, which 

reflect the volume tone and fluid dependence 

(blood fluidity), pressure and heart rhythm are 

reflected in the myocardial characteristics (in 

chronotope relations, dependence on velocity), 

the relationship between phases is shortened 

and weakened. 

 

METHODS: 

Consider the flow of a Newtonian 

incompressible viscous isothermal fluid in a 

limited volume with a fixed boundary. The 

standard model for describing such flows is the 

Navier-Stokes equations in the three-

dimensional domain Ω. We will distinguish 

between three types of boundary conditions: 

entrance boundary Γin — Dirichlet condition on 

the solid boundary Γ0 — the condition of 

adhesion on the outer boundary Γout is known 

for the normal component of the stress tensor:  

                    

                                          
(1) 

 

Here u is the velocity vector; p is the 

pressure; n is the normal vector to the surface;  

𝜌 — the density of the liquid; 𝜈 — the viscosity 

of the liquid. The functions f,, u0 are known, t0 — 

the initial moment of time.  Next, we will assume 

that f = 0. 

{
 
 
 

 
 
 𝜌 (

𝛿𝑈

𝛿𝑡
+ (𝑢 ⋅ 𝛻)𝑢) − 𝜈𝛥𝑢 + 𝛻𝑝 = 𝑓

                                                                    Ω𝐵
𝑑𝑖𝑣 𝒖 = 0

𝒖|Г𝑖𝑛 = 𝒖𝑖𝑛,     𝒖|Г0 = 0,

(𝑣
𝜕𝒖

𝜕𝒏
− 𝑝𝒏) |Г𝑜𝑢𝑡 = 𝜙,

𝒖 = 𝒖𝟎, 𝑡 = 𝑡0
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 We will assume that at the input 

boundary Γin, the flow value averaged over time 

and space is positive, and at the output 

boundary out is negative. The conditions u · n < 

0 on Γin and u · n > 0 on Γout, generally speaking, 

may not be fulfilled point wise. The condition 

for the normal stress at the outflow boundary is 

a natural boundary condition for the Navier-

Stokes equations written in convective form. Its 

use is very effective for numerical calculations 

[1]. 

Suppose that the solution of system (1) is 

smooth. Then, by scalar multiplication of the 

equation of moments by the vector u and 

subsequent integration of the equality over the 

domain Ω, we obtain the following identity: 

 
𝜌

2

𝑑

𝑑𝑡
||𝑢||2 + 𝑣||∇𝑢||2 + ∫ ((𝑝 +

𝜌

2Г𝑜𝑢𝑡∪Г𝑖𝑛

|𝑢|2)𝐼 − 𝑣∇𝑢)𝑛 ∙

𝑢𝑑𝑠 =                                                         ∫ 𝑓 ∙
Ω

𝑢𝑑𝑠,                                            (1.1) 

  

 𝐼 – is the unit matrix. Here and further, ‖ 

· ‖ — 𝐿2 is the norm. Let's denote the amount of 

energy for this problem: 

ℇ3𝐷 =
𝜌

2
||𝑢||2 

Since in our work f = 0, we rewrite the equality 

(1.1) in the following form: 
𝑑

𝑑𝑡
ℇ3𝐷 + 𝑣‖∇𝑢‖

2 + ∫ ((𝑝 +
Г𝑖𝑛

𝜌

2
|𝑢|2) 𝐼 − 𝑣∇𝑢 𝑛 ∙ 𝑢𝑑𝑠 +

∫ (
Г𝑜𝑢𝑡

𝜌

2
|𝑢|2𝑛 −

                                                                 𝜙)𝑢𝑑𝑠 =

0.                                                      (1.2) 

 Integrating it in time, we get the 

following energy identity:  

ℇ3𝐷(𝑇) + 𝑣 ∫ ‖∇𝑢‖2
𝑇

0

𝑑𝑡 + ∫ ∫((𝑝 +
𝜌

2
Г𝑖𝑛

𝑇

0

|𝑢|2)𝐼

− 𝑣∇𝑢)𝑛 ∙ 𝑢𝑑𝑠𝑑𝑡 + 

                                    ∫ ∫ (
𝜌

2Г𝑜𝑢𝑡

𝑇

0
|𝑢|2𝑛 − 𝜙) ∙ 𝑢𝑑𝑠𝑑𝑡 =

ℇ3𝐷(0)                                   (1.3)     

                                                                         

Under homogeneous conditions at all 

boundaries, equality (1.4) is equivalent 

𝑑

𝑑𝑡
ℇ3𝐷 +  𝑣‖∇𝑢‖

2 + ∫(
𝜌

2
Г𝑜𝑢𝑡

|𝑢|2𝑢 ∙ 𝑛𝑑𝑠 = 0 

  

to the assumption  

∫ |𝑢|2𝑢 ∙ 𝑛𝑑𝑠
Г𝑜𝑢𝑡

> 0    ∀𝑡 > 0                                                

(1.4) 

 

that 
𝑑

𝑑𝑡
ℇ3𝐷  ≤ 0 takes place, and therefore, energy 

dissipation occurs in the three-dimensional 

model of the fluid flow (1.1). Condition (1.4) is 

often used as an assumption for analyzing blood 

flow models that include one-dimensional and 

three-dimensional models simultaneously (for 

example, [1, 2]), but in practice it is very difficult 

to verify it. The condition (1.4), in particular, is 

not true if reverse flows occur, as, for example, 

in the inferior vena cava [3, 4].  

Assume that the approximation to the solution of 

the system of equations (1.1) uk pk at time tk = kΔt, 

k = 1, ..., n designed and required to find the 

unknown un+1, pn +1, with tn +1.  Approximating the 

time derivative with the second order accuracy in 

time tn +1, we get the following scheme:  

{

1

2∆𝑡
(3𝒖𝑛+1 − 4𝒖𝑛 + 𝒖𝑛−1) + 𝑤 ∙ ∇𝒖𝑛+1 − 𝑣∇𝒖𝑛+1 + ∇𝒑𝑛+1 = 𝑓𝑛+1

𝑑𝑖𝑣 𝒖𝑛+1 = 0

𝒖𝑛+1 |Г𝑖𝑛 = 𝒖𝑖𝑛
𝑛+1,   𝒖𝑛+1|Г𝑖𝑛 = 0,     (−𝑣

𝜕𝒖𝑛+1

𝜕𝒏
+ 𝜌𝑛+1𝒏)|Г𝑜𝑢𝑡 = 𝜙𝑛+1

    

(1.5) 

The choice of the expression for w allows 

either to linearize the convective term of the 

Navier-Stokes equations, or to preserve its 

nonlinearity. In the first case, the value of w is 

extrapolated from the solutions from the two 

previous time steps with the second order of 

accuracy: 

w = (2 u n - u n - 1 ) , (1.6) 

thus, a linear system of differential equations is 

obtained, known as the Ozein problem. In the 

second case, the value of w is equal to the value of 

the speed at the (n + 1) thetime step: 

w = u n +1 , (1.7) 

The problem (1.5) turns out to be nonlinear 

and we use the Newton-Krylov method to solve it. 
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RESULTS: 

In all these cases, Newton's method 

converged in 2-4 iterations with a given 

absolute accuracy of 10-6, in 3-4 iterations with 

an accuracy of 10-8 to 10-12. The most 

significant effect on the number of iterations 

required to achieve a given accuracy is exerted 

by the value of the velocity in the adjacent 

vessels. More iterations are required when the 

pulse wave maximum passes through the node. 

This is due to a decrease in accuracy when 

choosing an initial approximation, since the 

solution on the upper time layer changes more 

intensively. Thus, the use of this approach is 

limited by the value of the maximum allowable 

flow through the node. All the computational 

experiments carried out have shown that this 

maximum lies far beyond the boundaries of 

physiologically correct values. Therefore, 

Newton's method is computationally efficient 

and convenient for this task. 

 

CONCLUSION: 

The described approach to constructing 

a numerical implementation makes it possible 

to divide the problem into independent blocks 

for calculating the flow in each vessel and at 

each point of their docking. 

Although the described quasi-one-

dimensional model of global circulation 

provides only averaged characteristics of blood 

flow, it is quite convenient to use, since it does 

not require large computational costs and, 

generally speaking, allows real-time 

calculations on computers with sufficient 

performance. The simplicity of the model makes 

it possible to complicate it and thereby take into 

account the influence of many factors. 
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