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ABSTRACT: 

This article describes a mathematical 

model of the circulatory system for the 

cardiovascular system and provides a basic 

framework for the mathematical 

representation of cumulative medical 

parameters such as total vascular area about 

numerical solution of the Navier-Stokes 

equations and linearized Navier-Stokes 

equations   viscous Newtonian fluid model 

for blood vessel walls, blood volume, self-

regulation, and effects on the upper and 

inner heart. In mathematical terms, linear 

dependencies, differential, integral and 

differential equations are used. 

Keywords: linear dependence, integral-

differential equations, logical-dynamic 

equations, general vascular zone, self-

regulation, influence on the upper and 

working heart, medical parameters. 

 

INTRODUCTION 

The tone of the mathematical model of 

the degree of relation to the cardiovascular 

system and the circulatory system of three-

dimensional model of the flow of an 

incompressible viscous Newtonian fluid, which 

is related to time, is considered in the form of 

several specific areas of the cardiovascular 

system. When the experimental results, which 

reflect the volume tone and fluid dependence 

(blood fluidity), pressure and heart rhythm are 

reflected in the myocardial characteristics (in 

chronotope relations, dependence on velocity), 

the relationship between phases is shortened 

and weakened. Other pathologies require 

surgical intervention, for example, aneurysms, 

malformations.  

 

METHODS  

 Assume that the approximation to the 

solution of the system of equations (1.1) uk pk at 

time tk = kΔt, k = 1, ..., n designed and required to 

find the unknown un+1, pn +1, with tn +1.  

Approximating the time derivative with the second 

order accuracy in time tn +1, we get the following 

scheme:  

{

1

2∆𝑡
(3𝒖𝑛+1 − 4𝒖𝑛 + 𝒖𝑛−1) + 𝑤 ∙ ∇𝒖𝑛+1 − 𝑣∇𝒖𝑛+1 + ∇𝒑𝑛+1 = 𝑓𝑛+1

𝑑𝑖𝑣 𝒖𝑛+1 = 0

𝒖𝑛+1 |Г𝑖𝑛 = 𝒖𝑖𝑛
𝑛+1,   𝒖𝑛+1|Г𝑖𝑛 = 0,     (−𝑣

𝜕𝒖𝑛+1

𝜕𝒏
+ 𝜌𝑛+1𝒏)|Г𝑜𝑢𝑡 = 𝜙𝑛+1

    

(1.2) 

The choice of the expression for w 

allows either to linearize the convective term of 

the Navier-Stokes equations, or to preserve its 

nonlinearity. In the first case, the value of w is 

extrapolated from the solutions from the two 

previous time steps with the second order of 

accuracy: 

w = (2 u n - u n - 1 ) , (1.3) 

thus, a linear system of differential equations is 

obtained, known as the Ozein problem. In the 

second case, the value of w is equal to the value of 

the speed at the (n + 1) the time step: 
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w = u n +1 , (1.4) 

The problem (1.1) turns out to be nonlinear 

and we use the Newton-Krylov method to solve it. 

The discretization of (1.1) under the condition 

(1.2) leads to the need to solve the Ozein 

problem at each time step. Consequently, the 

main part of computational resources will be 

spent on the calculation of this problem when 

implementing a two-scale model of fluid flow. 

Therefore, special attention will be paid to 

numerical methods for solving the linearized 

Navier-Stokes equations.  

In general, the Ozein problem in the 

region Ω with the Dirichlet condition at the 

flow boundary Γin, the adhesion condition on 

the channel wall Γ0 and the Neumann condition 

at the output boundary Γout has the following 

form: 

{
  
 

  
 

𝛼𝒖 − 𝒖𝛥𝑢 + (𝑤 ∙ ∇)𝛥𝑢 + 𝛻𝑝 = 𝑓
                                                                   𝑖𝑛Ω

𝑑𝑖𝑣 𝒖 = 0
𝒖|Г𝑖𝑛 = g,     𝑢|Г0 = 0,

(𝑣
𝜕𝒖

𝜕𝒏
− 𝑝𝒏) |Г𝑜𝑢𝑡 = 𝜙,

𝒖𝟎 = ℎ

                                         

      (1.5) 

  

  

The weak formulation of the equations (1.5) 

consists in finding a function 

u ∈ V g ={u ∈ H 1 (Ω): u | Γ in = g, u | Γ 0 = 

0} and p ∈ 𝑄 , satisfying the equations: 

 

{
𝛼(𝒖, 𝒗) + 𝜈(∇u,∇v)+((w∙∇)u,v)-(𝑝, div v)=(f∗,v)-∫ v∙𝜙,∀v∈V,

Гout

(div u, 𝑞) = 0, ∀𝑞∈ 𝑄.

               (1.6) 

For the problem (1.1) - (1.2), we used 

the notation: 

𝛼 = 3(2∆𝑡)−1, f∗

= f𝑛+1 − (4un − un-1)(2∆𝑡)−1, 𝑔

= uin
n+1, ℎ = 2un − un-1. 

The dissertation uses the finite element method 

to discretize the system of equations (1.5). 

 

DISCRETIZATION OF THE OZEIN PROBLEM: 

We introduce finite-dimensional spaces 

for velocity Vℎ ⊂ V𝑔 and for pressure ℚ ℎ ⊂ 𝐿 2 

(Ω), approximating the spaces V𝑔 and 𝐿2(Ω), 

respectively. Let 𝕍ℎ
0  put (𝜓, 𝜑) 𝕧 = ( ∇ 𝜓 , ∇𝜑), 

and we believe that the conditions of elasticity, 

continuity and sustainability:   

 
𝛼1‖vℎ‖𝕍

2 ≤ 𝛼ℎ(vℎ , vℎ),     𝑎(vℎ ,uℎ)  ≤ 𝛼2‖vℎ‖𝕧‖uℎ‖𝕧    ∀vℎ ,uℎ ∈ 𝕍ℎ
0             

(2.1) 

Υ1
2‖𝑞ℎ‖

2 ≤
sup

vℎ∈𝕍ℎ
0

(𝑞ℎ,div vℎ)
2

‖vℎ‖𝕍
2     ∀ q

ℎ
∈ ℚℎ                                                             

(2.2) 
(𝑞ℎ ,div vℎ) ≤ 𝛾2‖𝑞ℎ‖‖vℎ‖𝕧        ∀ 𝑞ℎ, 𝑝 ∈ ℚ ℎ,     vℎ ∈ 𝕍ℎ

0                                 

(2.3) 

 

with positive constants 𝛼1, 𝛼2, 𝛾1, 𝛾2, 

independent of the computational grid. The 

condition (2.2) is also known as the LBB-

inequality or inf-sup inequality.  

 The finite element solution of problem 

(2.4) is the functions uℎ ∈ 𝕍ℎ and 𝑝ℎ 

∈ℚ ℎ, satisfying the equations: 
𝑎(uℎ , vℎ) − (𝑝ℎ ,div vℎ) + (𝑞ℎ,div uℎ)

= (fℎ
,∗, vℎ)

− ∫ vℎ ∙ 𝜙       ∀vℎ ∈ 𝕍ℎ
0 , ∀vℎ ,    qℎ ∈ ℚ ℎ  

Гout

 

where 
                 𝑎(uℎ , vℎ) = 𝛼(uℎ, vℎ) + 𝑣(∇uℎ , ∇ vℎ) +

(w∙∇uℎ , vℎ)                        (2.5) 

 

Let is choose the bases {𝜙𝑖 , 𝑖 = 1, ..., 𝑁Vℎ }} and 

{𝜓𝑖 , 𝑖 = 1, ..., 𝑁Q} in the spaces 0 and qℎ, where 

𝕍ℎ
0 , =dim(𝕍ℎ

0 , ) and 𝑁ℚ ℎ,  =dim (ℚ ℎ,). We will 

look for a solution in the form of a linear 

combination of basis vectors: 

uℎ(𝑥) = uℎ
𝑔
+ ∑ 𝑢𝑖 𝜑𝑖

𝑁 𝕍ℎ

i= 1

(x),      𝑝ℎ(x)= ∑ 𝑝𝑖 𝜓𝑖

𝑁 ℚℎ

i= 1

(x),    

where uh
g
 ∈ 𝕍ℎ  is an arbitrary vector function. 

Then the problem (2.5) is equivalent to a system 

of linear equations with a Saddle point with 

respect to unknown vectors of coefficients:  

                 (A 𝐵𝑇

B 0
) (
𝑈
𝑃
) = (

𝐹
𝐺
)                          (2.6) 

 

where 

(U)
𝑖
= 𝑢𝑖 ,     (P)

𝑖
= 𝑝𝑖 ,        

(F)
𝑖
= (fℎ

∗ , 𝜑𝑖) − ∫ 𝜑𝑖 ∙ 𝜙 − 𝑎( uℎ
𝑔
, 𝜑𝑖),      

Гout

 

https://translate.googleusercontent.com/translate_f#_bookmark41
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   (𝐺)
𝑖
= (div uℎ

𝑔
, 𝜓𝑖) 

𝐴𝑖𝑗 = 𝑎( 𝜑𝑗 , 𝜑𝑖),   𝐵𝑖𝑗 = −( div 𝜑𝑗 , 𝜓𝑖),    

 In this paper, quadratic and linear basis 

functions are used to approximate the velocity 

and pressure, respectively (P2-P1 elements). 

The sampling is carried out using the ani3D 

software package [1].  

 

NUMERICAL SOLUTION OF A SYSTEM OF 

LINEAR EQUATIONS WITH A SADDLE POINT: 

The system of equations (2.5) in the 

dissertation is proposed to be solved by the 

method of bi-conjugate gradients [2] with a 

block triangular determinant [3,4]: 

                  𝑃 = (�̂� 𝐵𝑇

𝑂 − �̂�
)                                                 

(2.6) 

The block 𝐴 ̂  is the re-determinant of the 

matrix 𝐴. To construct it, you can use multigrid 

methods [13] or domain decomposition 

methods [1, 3, 4]. These algorithms are effective 

for a sufficiently large range of viscosity 𝜈 and 

scale well. In practice, when using the 

preconditioned (2.6), the inverse matrix 𝐴^-1 is 

required. It can be given implicitly by means of 

an inaccurate solution of systems of linear 

equations of the form𝐴 𝐴y=x, where x is a certain 

vector. In fact, it is not necessary to know the 

components of the matrix 𝐴^-1 explicitly, it is 

enough to be able to calculate the result of 

multiplying the vector by it. For this purpose, in 

this paper we will use the V-cycle of the 

multigrid method. A description of how the loop 

of a multigrid method sets the determinant 𝐴^-

1 can be found in section 2.5 of [1].  

Where 𝑆 = BA -1𝐵 𝑇. The matrix 𝑆 is not 

sparse. Moreover, its construction explicitly 

requires the inversion of the matrix 𝐴. Thus, the 

calculation of the over conditioner for 𝑆^ is not 

a standard task. In practice, only the inverse 

matrix is of interest, the following determinant 

is: 

�̂�−1 ≔ �̂�𝑝
−1 𝐴𝑝𝐿𝑝

−1                 (2.7) 

 ( 𝑀p )ij , = ( ψj , ψi ) is the mass matrix for 

pressure (similarly, we will meet 

I ( 𝑀 ) , = ( φ , φ ) , - mass matrix for 

velocities);             

 𝑀^ p-1 approximate solution of a system 

of equations with a mass matrix𝑀p.  The 

matrices 𝐴 p and 𝐿 p approximate the 

convection-diffusion and Laplace operators in 

Qℎ, respectively, and require taking into 

account the boundary conditions for pressure 

(explicitly or implicitly). 

 If Qℎ approximates the pressure space 

and Qℎ ∈ 𝐻 1 (Ω), one can use a discretization of 

the Poisson problem for pressure with 

Neumann boundary conditions to determine 𝐿 

p : 

(𝐿𝑝)𝑖𝑗 = (∇𝜓𝑗, ∇𝜓𝑖) 

When setting the confection-diffusion 

problem for pressure in Qℎ, the Neumann 

conditions are also applied. However, the 

choice of optimal conditions at the border 

depends on the type of border itself and the 

flow regime [5, 6].  

In the literature, this preconditioned is 

called pressure con-vection-diffusion (PCD). It 

ensures the convergence of the method on the 

Krylov subspace, which depends on the 

calculated grid, if 𝜈 is not too small. In addition, 

the preconditioned is not very sensitive to the 

anisotropy of the grid, at least for some 

discretization. It can be used for both LBB-

stable sampling and pressure-stabilized 

sampling. In addition, for a preconditioned 

system of equations, there are estimates of 

eigenvalues [12, 13]. 

In this paper, it is proposed to use a 

modified PCD preconditioned (mPCD):: 

�̂�−1 ≔ 𝑣�̂�𝑝
−1 + (𝛼𝐼 +

𝑁𝑝)(𝐵�̂�𝑢
−1𝐵𝑇)−1                   (2.8) 

where (𝑁p)i,j = (w·∇ 𝜓j,𝜓i) is a discrete 

advection matrix for continuous approximation of 

pressure; 𝑀  ̂u is a diagonal approximation of the 

mass velocity matrix. It is known that a diagonal 

matrix is a good approximation in the case of regular 
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triangulations. However, in the case of anisotropic 

meshes, sometimes this approximation turns out to 

be weak. The matrix (𝐵 𝑀^u-1𝐵 𝑇) can be considered 

as a mixed discretization matrix of the Poisson 

problem for pressure with the boundary conditions 

of the problem (2.9) implicitly given through the 

matrix 𝑀n. This modification of the PCD 

preconditioned partially explains the choice of 

Neumann boundary conditions for the task 𝐿p. In 

cases where the inertia forces can be neglected, the 

re-conditioner (2.8) agrees with the standard Kahu-

Shabat reconditioned for the time-dependent 

Stokes cx problem [12]. 

The spacing of the eigenvalues for the pen 

due to the Schur complement can be limited 

constants 𝑐1, 𝐶1, independent of the grid spacing 

ℎ (but possibly depending on the parameters of 

the task or area geometry and anisotropy): 

0 < 𝑐 1 ≤ | 𝜆 ( �̂� - 1 ) | ≤ 𝐶 1 .                              (2.9) 

 The proof of this fact can be found in [13] 

for 𝛼 = 0 and LBB-stable finite elements, for the 

more general case in [12]. 

 

RESULTS: 

Thus, an important problem of modern 

medicine is the creation of effective methods of 

treatment and prevention of cardiovascular 

diseases. Mathematical modeling plays an 

increasing role in their development and 

numerical calculations of blood flow in the 

network of vessels with pathologies. They allow 

predicting surgical operations, optimizing the 

shape of implants, and investigating their 

influence on hemodynamics. 

More iterations are required when the 

pulse wave maximum passes through the node. 

This is due to a decrease in accuracy when 

choosing an initial approximation, since the 

solution on the upper time layer changes more 

intensively. Thus, the use of this approach is 

limited by the value of the maximum allowable 

flow through the node. All the computational 

experiments carried out have shown that this 

maximum lies far beyond the boundaries of 

physiologically correct values. Therefore, 

Newton's method is computationally efficient 

and convenient for this task. 

 

CONCLUSION: 

Many discoveries led to the complication 

of sciences and specialization of scientists: only 

doctors began to deal with medicine, and 

detailed research nature of various phenomena 

- physicists and engineers. Over the past 

decades, the interaction of physics, mathematics 

and medicine has taken a different form. At the 

junction of these sciences, a new area of 

research arose, namely the mathematical 

modeling of physical processes, in our case, 

blood circulation. 

The described approach to constructing 

a numerical implementation makes it possible 

to divide the problem into independent blocks 

for calculating the flow in each vessel and at 

each point of their docking. 

Although the described quasi-one-

dimensional model of global circulation 

provides only averaged characteristics of blood 

flow, it is quite convenient to use, since it does 

not require large computational costs generally 

speaking, allows real-time calculations on 

computers with sufficient performance. The 

simplicity of the model makes it possible to 

complicate it and thereby take into account the 

influence of many factors. 
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