OXYGEN COMPOUNDS OF PHOSPHORUS

Sodiqov Murodjon Usmonaliyevich Kokand State Pedagogical Institute, Senior Lecturer

ANNOTATION

This article discusses the methodology of teaching phosphorus and its compounds using the methods of blitz survey, cluster and brainstorming.

Keywords: Phosphorus (III) oxide, orthophosphoric acid, "Blitz questionnaire", cluster.

Homework - to study the atomic structure of phosphorus, methods for obtaining compounds. Using the "Blitz Questionnaire", the covered topic is asked with the help of quick questions. Fill in the table:

N⁰	Name	Answer
1	Phosphorus chemical symbol	
2	Position in the periodic table	
3	atomic structure	
4	Electronic configuration	
5	Valence	
6	Oxidation level	
7	Allotropic shape changes	

There are 2 oxides of phosphorus.

Phosphorus (III) oxide.

 P_2O_3 is a white, waxy toxic substance.

Phosphorus(V) oxide.

P₂O₅ is a white crystalline hygroscopic substance.

Phosphorus(V) oxide is formed with the participation of a sufficient amount of oxygen in the combustion of phosphorus:

 $4P + 5O_2 = 2P_2O_5$

From a solution of P_2O_5 in water under normal conditions:Metaphosphoric acid $P_2O_5 + H_2O = 2HPO_3$ is formed.Orthophosphoric acid can be obtained by heating an aqueous solution of P_2O_5 : $P_2O_5 + 3H_2O = 2H_3PO_4$ Homework is given. Compare the two oxides using a Venn diagram. P_2O_3 P_2O_5

Phosphoric acids are taught.

H₃PO₃ - phosphitic acid

HPO3 - metaphosphoric acid

H₃PO₄ - phosphoric acid

H₄P₂O₇ - pyrophosphate acid

There will be memory training. 2 students go to the blackboard and write the formulas of memorized acids.

Metaphosphate acid reacts with water under the influence of temperature to form orthophosphate acid: $HPO_3 + H_2O = H_3PO_4$

When orthophosphate acid is gently heated, pyrophosphate acid is formed:

 $2\mathrm{H_3PO_4} \rightarrow \mathrm{H_4P_2O_7} + \mathrm{H_2O}$

Upon further heating, it decomposes to P₂O₅.

Orthophosphoric acid is obtained in the laboratory by heating calcium orthophosphate under the action of concentrated sulfuric acid:

 $Ca_3(PO_4)_2 + 3H_2SO_4 \rightarrow 3CaSO_4 + 2H_3PO_4$

Orthophosphoric acid - H₃PO₄. Orthophosphoric acid is a colorless crystalline substance, highly soluble in water, liquefies at 42.3°C.

When phosphoric acid dissociates, it forms 3 different ions, so 3 series of salts are formed.

Dihydrogen phosphate: NaH₂PO₄

Hydrophosphate: Na₂HPO₄

Phosphate: Na₃PO₄

Orthophosphoric acid gives all the general reactions characteristic of acids.

Reactions are written on the board, students continue the reactions and compare:

 $K + H_3PO_4 →$

MgO + H₃PO₄ \rightarrow

 $\rm LiOH + H_3PO_4 \rightarrow$

 $\rm NH_3 + H_3PO_4 \rightarrow$

$$Na_2CO_3 + H_3PO_4 \rightarrow$$

Experience: a solution of phosphoric acid is poured into a solution of silver nitrate, and a yellow precipitate Ag₃PO₄ precipitates.

3AgNO₃ + H₃PO₄ = Ag₃PO₄ + 3HNO₃

This reaction is reactive for the phosphate ion.

The famous academic scientist A.Y.Fersman highly valued the importance of phosphorus and called it the "element of life and thought" Ca₃(PO₄)₂, an inorganic component of human and animal bone tissue. It provides strength and hardness to bones. Energy metabolism in a living organism is carried out by a phosphorus compound - adenosine triphosphate (ATP). The daily intake of phosphorus by a person is approximately 1600 mg.

Make the following changes.

 $P \rightarrow P_2O_5 \rightarrow H_3PO_4 \rightarrow Ag_3PO_4$

Compare phosphorus oxides with a Venn diagram.

List of Used Literature

- 1. Аблабердиева, Карима Джураевна, Максад Аббасович Расулов, and Мурад Усманалиевич Содиков. "РАЗВИТИЕ НАУЧНОГО ПОТЕНЦИАЛА У ДЕТЕЙ ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЫ." Будущее науки-2016. 2016.
- 2. ТУРСУНОВА, ГУЛФИРОЗ ВАКИЛЖОН КИЗИ, et al. "О РЕЗУЛЬТАТАХ ИССЛЕДОВАНИЯ АЗОТИСТЫХ ОСНОВАНИЙ ФЕРГАНСКОЙ НЕФТИ." Молодежь и XXI век-2015. 2015.
- 3. МАКСУДОВ, МУЗАФФАР САМИНЖОНОВИЧ, et al. "ИРИДОИДНЫЕ ГЛИКОЗИДЫ И ИХ БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ." Молодежь и XXI век-2015. 2015.
- 4. Нуъмонов, Бахтиёржон Омонжонович, et al. "ПРЕЦИПИТАТ И СУЛЬФОАММОФОС НА ОСНОВЕ КОНВЕРСИИ ФОСФОГИПСА С ДИАММОФОСНОЙ ПУЛЬПОЙ." Химическая промышленность сегодня 1 (2021): 34-45.
- 5. Нуъмонов, Бахтиёржон Омонжонович, et al. "Односторонние фосфорные удобрения на основе разложения забалансовой руды фосфоритов Центральных Кызылкумов упаренной экстракционной фосфорной кислотой в жидкофазном режиме." Universum: технические науки 8 (53) (2018): 41-48.
- 6. Хужаев Вахобжон Умарович, Очилов Голибжон Мамаюнусович, and Кушназарова Шохида Касимовна. "КЛАССИФИКАЦИЯ И ОПРЕДЕЛЕНИЕ ЖИРНОСТИ МЯСНЫХ ПРОДУКТОВ С МЕТОДОМ ГАЗА ЖИДКОСТНОЙ ХРОМАТОГРАФИИ" Universum: технические науки, no. 12-2 (81), 2020, pp. 108-115.
- 7. Кушназарова, Ш. К. "Сифатсиз ва қалбаки гўшт маҳсулотларини аниқлаш усуллари." Лифе Sciences анд Agriculture: 2-1.
- 8. Каримова, Диловар Батировна. "Классификация парфюмерной продукции на основе ТНВЭД." Life Sciences and Agriculture 2-2 (2020): 6-10.
- 9. Karimova, D. B., and V. U. Khuzhaev. "DETERMINATION OF PARABENS IN COSMETICS." SCOPE ACADEMIC HOUSE B&M PUBLISHING (2021): 26.
- 10. Нуъмонов, Бахтиёржон Омонжонович. "КОНЦЕПТУАЛЬНЫЕ ОСНОВЫ ХИМИЧЕСКОГО ОБРАЗОВАНИЯ НА ПРАКТИКЕ." Ученый XXI века (2016): 12.
- 11. Нуъмонов, Бахтиёр Омонжонович, Абдурасул Абдумаликович Маматалиев, and Шафоат Саттарович Намазов. "Сульфат аммония и преципитат на основе аммиачной конверсии фосфорнокислотной гипсовой пульпы." International scientific review LXV (2019): 24-29.
- 12. КАРИМОВА, ДИЛОВАР БАТИРОВНА, et al. "ОПРЕДЕЛЕНИЕ УСЛОВИЙ СИНТЕЗА ГЕКСААЛЮМИНАТА ЛАНТАНА МАГНИЯ." Поколение будущего: Взгляд молодых ученых-2015. 2015.
- 13. КАРИМОВА, ДИЛОВАР БАТИРОВНА, et al. "ДИСЛОКАЦИОННЫЕ ДЕФЕКТЫ В МОНОКРИСТАЛЛАХ ГЕКСААЛЮМИНАТА ЛАНТАНА МАГНИЯ." Молодежь и XXI век-2015. 2015.