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ABSTRACT 

This A characteristic function in the article is an independent one central limit theorems of uniformly 

distributed randomness, theorems of Lindeberg, Feller and Lyupanov, some limit theorems of random 

branching process, theorems about the rate of approximation to the exponential distribution law and 

their proofs are considered. 

 

Annotation 

In this article deals with the characteristic function, the theorems of randomly distributed central 

limits of independent distribution, the theorems of Lindeberg , Feller and Lyupanov , some limit 

theorems of random branching process, theorems on the estimation of the rate of approach to the 

exponential distribution law and their proofs. 

 

Higher order moments . 

Random of quantities another numerous also referring to the characteristics let 's go Such 

characteristics as a lot cases high in order moments is used . 

If the distribution function of a random variable is F ( x ), 

   (1.1 ) 

integral k - order random variable moment or k - order initial moment is called Of course , if 

   (1.2) 

integral approximant be k - ordered _ 
k

m moment will exist  k k
m  . Probabilities in theory 

k
m  

of torque that it exists 
k

  k - order absolute torque is equal to the existing case . 

If  distribution function of random variables  F x  is of discrete type and its breakpoints 

 
sequence organize if he does , then Stilts of the integral to the x axis according to k - order moment 

 
equality with is determined. Here 

 
being _ 



NOVATEUR PUBLICATIONS 

JournalNX- A Multidisciplinary Peer Reviewed Journal 

ISSN No: 2581 - 4230 

VOLUME 8, ISSUE 12, Dec. -2022 

156 | P a g e  

 

    (1.3 ) 

assuming that the series converges to be done . 

If  the distribution function of the random variable F ( x ) is of continuous type, and the function f ( x 

) is its density function     'F x f x , then based on the property of the Stiltes integral 

   (1.4 ) 

equality is determined by  In this case 

    (1  5) 

integral assuming that it approaches will be done . The zeroth order moment is always there is and 

. 

First order moment 

    (1.6 ) 

  is the mean or mathematical expectation of a random variable . If c is a constant number , 

   ( 1.7) 

Integral g a  is called the k -order moment of the random variable with respect to c . Mathematician 

don't wait relatively moments 

  ( 1.8) 

  are called k - order central moments of the random variable . 

Here _  1

k

x m  The expression is explained by Newton's binomial formula , as follows formulas 

harvest we do : 

 

and that's right . They are moments 
k

m of order k lar central moments
k

  connect with Immutable c 

to relatively second for the ordered torque 
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to the relationship have we will be and from him 

  ( 1.9) 

equality we can It is known that this moment is random amount   is called the variance of and   

from the main numerical characteristic for is considered Proof relation ( 1.9 ).   ng can be taken as 

the definition of the variance of a random variable . 

If 0E   if , the central moment is initial to the moment equal to will be 

  random of the amount k - order central absolute as the moment 

   (1.10 ) 

to expression it is said . 

X ususan , if 0E   is k - ordered _ central absolute moment k - order initial with absolute torque on 

top of each other falls _ 

 

Higher order moments for inequalities 

Cauchy-Buniakovsky inequality 

Second in order to the moment has i x theory   and   random amounts for the following inequality 

suitable for : 

    (1.11 ) 

Proof . It is  2 21

2
    known that and 

2E  and 
2E  moments from its finiteness 

E     that come comes out x and to the variables y depends has been positive determined this  

 
discriminant of the quadratic form 

 
from which (1) the inequality holds since i arises. 

Golder's inequality 

Suppose 1 is probable with 0, 0 ,va p q    let the relations for numbers 

1 1
1, 1, 1p q

p q
    be appropriate. 

If and , then 

    (1.12 ) 
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the inequality becomes relevant. 

p=q =2 is taken in Golder's inequality , the Cauchy-Buniakovsky inequality is derived. 

Work with linear combinations of given random variables in many cases  have to see, for their higher 

order moments 

 
the formula can be proved. 

Now higher order absolute moments  Let us prove the following property related to . For 

and with respect to variables 

 
Minus didn't happen quadratic form let's see . It is quadratic form determinant counting _ 

 

we form the inequality. In this inequality, if the turn b is considered , 

 
If we multiply the resulting inequalities , 

 
inequalities come comes out O x irg while 

 
the fact that come comes out In particular , 

 
And those inequalities are called Lyapunov inequalities . 

 

I x theory distribution function of F ( x ). everyone in order moments 

 
be available. These moments of the function F ( x ) are single- valued that determines 

 

let's put the issue. This problem is mathematical in the analysis "problem of moments" 

 

The following is related to the so-called general problem and its solution 

 

results. If 

    (1.13 ) 

the series converges for some r >0, the function F ( x ) is the only function with 

moments. 
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The dispersion (second-order central moment) of a random variable characterizes how scattered the 

values of this quantity are around the mean value. Based on this, we will dwell on the probabilistic 

meanings of higher-order moments. 

If F ( x ) is a symmetric distribution function (i.e  is a symmetric random variable), then all its 

moments of odd order are equal to 0 (of course, if these moments exist). B to him this is a symbol for 

 
it is possible to be sure of the equality . Therefore, all moments of odd order, which are not equal to 0, 

can be taken as an asymmetric characteristic of the distribution. In this sense, the 3rd order moment 

of the given distribution is taken as the simplest asymmetry characteristic . Given the homogeneity of 

the scale 

    (1.2.14) 

expression of distribution asymmetry taken as the coefficient  

 

will be done . Even order to (higher order with respect to dispersion) moments 

 

probability can be given. For example , 

 
The expression F ( x ) is called the excess coefficient of the distribution, which characterizes the level 

of "smoothness" of F ( x ) around the "center" (mean value). 

It is not difficult to check that the moments of the given distribution exist, since this problem depends 

on the asymptotics of the "left residual" F (- x ) and the "right residual" (1- F ( x )) . For 

example, 

 

, then all moments in the order exist for this distribution. 

Reversal formula 

Har one F(x) distribution function for  

( ) ( )itxf t e p x dx





      (1.15) 

 formula through determined  f t  characteristic function suitable will come This is your opinion the 

opposite is also appropriate , i.e distribution function characteristic function through one valuable is 

determined . 

Theorem a ( reversal  formula ).    F F x  - distribution function and 

f(t)= ( )itxe dF x


      (1.16 ) 

to him suitable came characteristic function let it be 
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1 °) A gar a  and b  ( )a b  s F(x)  of the function continuity points bo'Isa , in that case 

1
( ) ( ) lim ( )

2

ita itb
A

AA

e e
F b F a f t dt

it






      (1.17) 

2 °) If | ( ) |f t dt



   if , then ( )F x absolute continuously distribution function being his _ density 

function 

1
( ) ( )

2

itxp x e f t dt






       (1.18) 

Through the formula is expressed . 

Proof : First ( )F x  absolute continuously has been without let's see . 

In this case ( 1.15) to the formula according to  

( ) ( )itxf t e p x dx





   

and therefore The formula (1.18) is also integrable for f(t)  of the function Fourier from replacement 

consists of (1.18 ) and the left of Eq right sides integrated , result has been in expression integration 

order Substituting , we find : 

1 1 1
( ) ( ) ( ) [ ( ) ] ( ) [ ]

2 2 2

ita itb
b b b

itx itx

a a a

e e
F b F a p x dx e f t dt dx f t dt e dx dt dt

it 

  
 

  


           

So this is it private without reverse formula Fourier integral transform from the result consists of  

Now (1.17 ) formula common without let's move on to the proof .  

1 °. ( ) ( ), 1, 2,...,itxf t i x e dF x k  

  




   

from the formula this 

1 1
( ) [ ( )]

2 2

ita itb ita itb
A A

itx

A
A A

e e e e
J f t dt e dF x dt

it it 

 




  

 
    (1.19) 

of equality appropriate the fact that come comes out 

2 .

y y

ix iy it

x x

e e e du du x y       

 from inequality 

| | | |
ita itb ita itb

itxe e e e
e b a

it it

  
    

the fact that come comes out That's it with together 

( ) ( ) 2 ( )
A

A
b a dF x A b a



 
       

relationship appropriate what happened _ for (1.19) in the integral Fubini according to the theorem 

 integration order replacement can _ So by doing 
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1
[ ] ( )

2

ita itb
A

itx

A
A

e e
J e dt dF x

it




 


    

1 sin ( ) sin ( )
[ ] ( )

2

A

A

t x a t x b
dt dF x

t



 

  
    

( ) ( )

( ) ( )

1 sin sin
[ ] ( ) ( ) ( ),

2

A x a A x b

A
A x a A x b

z z
dz dz dF x G x dF x

z z

   

     
      (1.2.20) 

this on the ground 

( ) ( )

( ) ( )

1 sin sin
( ) [ ]

2

A x a A x b

A
A x a A x b

z z
G x dz dz

z z

 

   
     (1.21) 

sin
( , )

y

x

z
g x y dz

z
     function x  and y  arguments according to flat continuously and 

,
lim ( , )

x x
g x y 

 
     (1.22) 

equality appropriate . From this all A and x numbers for so S a fixed number is found such that its for 

| ( ) |AG x C   of inequality execution come it clicks . That's it with together , from equations 

(1.21) and (1.22). 

lim ( ) ( )A
A

G x G x


  

of the limit existence easily to prove can _ Here _ 

0, , ;

1
( ) , , ;

2

1, .

x a x b

G x x a x b

a x b

 



  


 

 

From this and Lebesgue's Majorant approach about to the theorem according to the integral sign 

under A  to the limit at transition from possible using the following we find : 

lim lim ( ) ( ) ( ) ( )A A
A A

J G x dF x G x dF x
 

  
     

( ) ( ) ( ) ( ) ( ) ( )
a b

a b
G x dF x G x dF x G x dF x




       

1
( ) ( ) [ ( ) ( ) ( ) ( )]

2
F b F a F a F a F b F b         

If a and b points of the function F(x). interruption points that attention the last one from equality  

(0)f i M  

   

of the formula appropriate the fact that come comes out 
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