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ABSTRACT 

In this paper, necessary and sufficient conditions are given for the validity of the asymptotic 

Kolmogorov formula for the probability of continuation of a branching Galton–Watson random process. 
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1 Introduction 

A branching random process with discrete time and one type of particles is considered [1] (ch. 2, pp. 

11-52), [2] (ch.1, pp. 11-49), [3] (ch. 2, pp. 11-22). 

 We will say that a sequence of random variables (r.v. ) 0 1, ,..., ,...nZ Z Z with non-negative and 

integer values forms a branching Galton-Watson random process (G-V) if these s. in. are defined by the 

following recurrence relations: 

          
1

0

1

1, Z , 2.
nZ

n k

k

Z X n




                  (1 .1 ) 

Here is 1 2, ,..., ,...nX X X a sequence of independent c. in. non-negative and integer values with a common 

distribution 

 1

0

, 0, 1.n n

n

P X n p n p




     

We assume that  1 1 1P Z X  the generating function c. in. 1Z   

  1 1

0

, 1.
Z X n

n

n

F x Ex Ex p x x




     

 In this case, the sequences with in. {X , 1}n n  and {Z , 0}n n  are defined in the same probability 

space  , , P  . 

The following interpretation of the process G - C follows from the above: at the beginning of the process 

there is one particle, which  0 11 ,Z Z means the number of particles of the first generation. (the 

number of direct descendants of one particle). Therefore,  , 0np n  is a distribution with. in. 1Z , and 

the number of particles n  of the th generation  2nZ n  is formed by recursive formulas (1 .1 ). Thus, 

generating functions (p. f.) 

     0 1

0 1, , 1
Z Z

F x Ex x F x Ex F x x     . 

       1

1 , 0nZ

n n nEx F x F F x F F x n

    ( 1. 2) 
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If discrete s. in. Х takes values from the set  0,1,..., ,...n , then differentiating k once its a.f.   XF x Ex

at the point 1x  , we obtain formulas for the factorial moments k of the th order 

       (k) (1) 1 ... 1 1 ... 1k n

n k

m F EX X X k n n n k p




          

Factorial moments play a very significant role: 

 

   

 

'

1

'' 2

2

''' 3 2

3

1 ,

1 1 ,

1 3 2 .

m m F EX

b m F EX X EX EX

m F EX EX EX

  

     

   

 

Further, we will say that the process G - C  , 0nZ n  degenerates at the moment of time n if the event 

occurs  0nZ  . Then it is obvious that 0n kz   for any 1,2,....k    

Hence    0 0n nP Z F  . Probability 

        1lim 0 lim 0 lim 0n n n
n n n

P Z F F F F 
  

      

It follows from the last equalities that the probability of  the process G - V degenerating is a solution 

to the equation  x F x . Since 1x  there is a trivial solution of the last equation, the probability of the 

degeneration of the process is determined by the equality  0min 1, x  , where 0x satisfies the equality 

 0 0x F x . It follows from the last reasoning that the probability of degeneracy  is the smallest 

positive solution of the equation  F x x . 

The first factorial moment 1m EZ plays an important role in the asymptotic analysis of the G–V 

process, being a classifying parameter for branching processes: the probability of degeneracy 1  at 

1m , and 1m the probability at 1  . Accordingly, in the case of 1m , the G - C process is called 

subcritical, with 1m critical, and in the case of 1m supercritical. 

 As noted above, the branching random process G - C 

 0, 1, 1nZ n Z   

with one type of particles and discrete time is determined by setting the distribution of one s. in. 1Z . 

Really 

     0 1 11 1, , 0,1,2...kP Z P Z k P X k p k        

at 0l    

   1 1 2/ ...n n lP Z k Z l P X X X k           (1.3) 

where iX are independent and have a distribution  , 0kp k  with a generating function  F x . Besides, 

 10 / 0 1n nP Z Z    . 

Therefore, by virtue of (1.3), the branching process Г – В  , 0nZ n  forms a homogeneous Markov 

chain with a set of states  0,1,..., ,...n . 

Further, it is easy to see that for 01, 1m x  , for 01, 1m x  , for 01, 1m x  . Consequently, the 

subcritical and critical processes Г–В  1m  are degenerate with probability one, and the supercritical 
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process  1m  is degenerate with probability 0 1x   . From what has been said, we can conclude 

that it has the following assertion. 

If 
1m EZ  , then 

 

   

lim 0, 1,

lim 0 1 lim

n
n

n n
n n

P Z k k

P Z P Z 



 

   

     
 

The validity of the first relation of the above sentence follows from the fact that a random process 

 , 0nZ n  as a Markov chain has no return states in the set  1,..., ,...n . The proof of the second 

assertion is contained in the following assertions. 

Since s. in. nZ take integer values, then degeneration is an event, which consists in the fact that 0nZ 

for some 1n  . 

Then  1 0 / 0 1n nP Z Z    , and by virtue of the continuity property of the probability measure, we 

have the following chain of equalities

       

     

1

1

0 1 lim 0 1 0

lim 0 lim 0 lim 0

n n n n
n

n

n

k n n
n n n

k

P Z P Z P Z для некоторого n P Z

P Z P Z F 






  


 
           

 

 
      

 

 

Therefore, the probability of degeneracy of the branching process Г–В is the smallest positive root of 

the equation  x F x . 

2. Asymptotics of the Process Continuation Probability for Subcritical Galton–Watson Processes 

. 

Let      1 0 0 1n n n nQ P Z P Z P Z       the probability of continuation of the process G - C. 

 It is well known that if 1m  , then 0nQ  , for n , if 1m  , then lim 1 0n
n

Q 


   . An 

essential and interesting problem is the convergence of the probability asymptotics nQ for n . In 

1938, A. N. Kolmogorov [4] proved that if 1m  and  '' 1b F  , then 

  1 1 ,n

nQ Km o n           (2.1) 

where is K a positive constant determined by the form of the p.f.  F  . 

 Here we give a necessary and sufficient condition for the asymptotic relation (2.1) to hold. 

Theorem 2.1 . If 1m  , then for the fulfillment of the asymptotic relation (2.1) it is necessary and 

sufficient that 

 1

2

0

1 1mx F x
dx

x

  
     (2.2) 

 Proof. Let 

   1 1F x mx mx x       (2.3) 

where   0x  , at 0x . Let's put 
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 
0

, k

k j k

j k k

q p G x q x
 

 

    

Then we have 

 
 1

1

F x
G x

x





     (2.4) 

Using the last equalities (2.3) and (2.4), we obtain 

 
 

  
1 1

1 1
F x

G x m x
x


 

       (2.5) 

It follows from (2.4) that  G x m , for 0x . From here and from (2.3) it follows that for0 1x   

  0x        (2.6) 

And, moreover, at 0x   

  0x  .      (2.7) 

In fact, according to the Lagrange formula 

        '

1 11 1 1 1F x R x x mx F R x x         (2.8 ) 

where  1R x can be expressed as the value of the derivative  'F x at an intermediate point 

   '

1 1 , 0 1x x xR x F x       . 

It is easy to make sure that it  1R x does not kill with  0,1x and besides 

       ' '

1 1
0

0 1 , lim 1
x

R x F R x F m


    . 

From here and (2.8) it follows that 

   1 1 , 0F x mx o x x       (2.9 ) 

Now the proof of relations (2.6) and (2.7) follows from (2.9) in view of the equality 

 
 1 1mx F x

x
x


  

 . 

In what follows, the following assertion is used. 

Lemma 2.1. fair equality 

 
 
 

1
1

0

1 1
1 1

1 1

n
k

n

k k

F x
F x x

F x






 
  

 
    (2.10) 

Proof. 

To prove this lemma, we apply the method of mathematical induction. 

When 1n  we have 

   
 

 
1

1

0

1
1 1 1 1

1 1

F x
F x F x x

F x


     

 
. 

Let relation (2.10) be valid for n p i.e. 

 
 
 

1
1

0

1 1
1 1

1 1

p
k

p

k k

F x
F x x

F x






 
  

 
  
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Then 

 
 

 
 

 

 

  
 

 
 

1
11 1

0 0

1

1

1 11 1 1 1

1 1 1 1 1 1

1 1
1 1 1 1

1 1

p p
pk k

k kk k p

p

p p

p

F xF x F x
x x

F x F x F x

F x
F x F x

F x


 

 





    
  

     

 
      

 

 
 

Lemma 2.1 is proved. 

 From equality (2.10 ) it follows that 

   
  

1
1

0

1 0 1 0

1 0

n
n k

n
k k

F F

m m F






 



    (2.11) 

Let the asymptotic relation given in equality (2.1) hold. 

 Let us write condition (2.2) in the form 

 1

0

x
dx

x


   

The product (2.11) is transformed into equality (2.5) as follows: 

     
  

  
1 1

0 0

1 1 1 01 0
1 1 0

1 0

n n
kn

kn
k kk

F FF
F

m m F


 

 

  
     

    (2.12 ) 

Using (2.1), we obtain the equality 

     
1

0

1 1 0 1 1
n

k

k

F K o




       

This implies that the product (2.12) converges to a constant K i.e. 

 
  

0

1 0
lim 1 1 0n

knn
k

F
K F

m








          (2.13) 

Consequently, from (2.13) we obtain that 

  
1

1 0k

k

F




    . 

By virtue of (2.1), the latter means that 

 
0

n

n

Km




    

or 

 
0

xKm dx


   . 

Therefore, by substituting 
xu Km , we see that 

 1

0

x
dx

x


  . 

The necessity of condition (2.2) is proved. 
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Remark 2.1. In the course of the proof of Theorem 2.1, an expression for the constant K in the 

asymptotic relation (2.1) is obtained in the form of formula (2.13). 

 now prove the sufficiency of condition (2.2) in Theorem 3.1. The product on the right side of 

equality (2.11) we set 

  
 
  

   
1 1

1

0 0

1 0
1 1 0

1 0

n n
k

k

k kk

F
I n F

m F


 


 


   


   

Taking into account (2.6), we can conclude that the product  I n either converges or diverges to zero. 

In the first case, the asymptotic relation (2.1) is satisfied. 

Now let the product  I n diverge to zero i.e.   0I n  , n . In this case, the series diverges 

       
0 0 0

1 0 k k

k

k k k

F m I k m  
  

  

           

But then the integral also diverges 

 
1

xm dx


   , 

or 

 1

0

x
dx

x


   . 

Theorem 2.1 is proved. 

Remark 2.2. 1) Note that 

 
2

0

1 1 k

k

k

mx F x
r x

x





  
  , 

where , 0,1,2,...k j

i k j i

r p k
 

 

 . 

If  '' 1b F  , then 
0

k

k

r b




 . 

These formulas follow from the fact that the function 
 1 1F x

x

 
is a f.f. tails 

1

j

j k

p


 

 of the 

distribution  , 0jp j  , and the function 
 

2

1 1mx F x

x

  
 is a p.f. distribution tails 

1 1

1
j

k n j k

p
m

 

   

 

. 

2) If s. in. X takes integer non-negative values, then EX it can be calculated by the formula 

 
1k

EX P X k




  . 

Indeed, in this case 

         
0 1 1 1

1 1
k k k k

EX kP x k k P X k P X k kP x k kP x k
   

   

                   
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(Here the equality of events is used      1X k X k X k      ). 

       
1 1 1

1
k k k

kP x k k P x k P x k
  

  

          

3) Condition (2.2) is equivalent to the existence of the expectation 

 
1

ln ln
n

EX X n nP X n




     

This statement is proved by the following chain of equalities: 

   1 1 1

2
0 00 0 0

1 1 1

1

n

j j

n k n j k n k n j k

mx F x x
dx dx p x dx p

x x n

      

     

   
     

 
       

Further 

   1 1j

k n j k k n j k k n

p P X j P X k
    

    

 
    

 
    . 

Consequently 

   1 1

0 1 1

1 1

1 1

n

n k n k k

P X k P X k
n k

  

   

  
 

    ,  
1

1
ln 1

1

n

k

n O
k

 


 . 

 
       

1

1 1 12
1 1 10

1 1
ln ln 1

n n n

mx F x
dx nP X n O P X n nP X n O

x

  

  

    
        

 
   . 

Further 

     1 1 1

1 1 1

ln ln ln
n n k n n

nP X n n P X k n nP X n
   

   

         . 

In this way 

   
   

     

1 1

1 12
1 10 0

1 1

1 1

1 1
ln

ln 1 ln

n n

n n

mx F x x
dx dx n nP X n O nP X n

x x

n nP X n O n nP X n const

  

 

 

 

    
        

 

     

  

 

 

Consequently, condition (2.2) is equivalent to the existence of the integral 

   1 1

2

0 0

1 1mx F x x
dx dx

x x

  
   

is equivalent to the condition for the existence of the mathematical expectation 

 1 1ln 1EX X   . 
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