ON THE ROOTS OF A QUADRATIC EQUATION DEPENDING ON A PARAMETER

Aroyev Dilshod Davronovich Kokand State Pedagogical Institute

Axmedova Gavxar Axadovna Kokand State Pedagogical Institute

Bektosheva shoxsanam Ahrorjon qizi Master Student of the Kokand State Pedagogical Institute

ANNOTATION

In this article, some relations between the roots of a quadratic equation that depend on a parameter are investigated, and a theorem is given that is convenient to use when solving problems of this type.

Keywords: quadratic equation, quadratic function, square triangle, root, discriminant, system of equations, system of inequalities .

In many cases, students encounter difficulties in determining the position of the roots of parametric quadratic equations relative to numbers that satisfy given conditions. They perform a number of computational operations when they are defined. We will tell you about the easiest way to solve such issues.

$$\operatorname{it} x^2 + px + q = 0$$

(1) square of triad 2 real x_1 va x_2 $(x_1 < x_2)$ let the roots. λ – let it be some real number, indistinguishable from the roots. So, the λ next $(-\infty, x_1)$, (x_1, x_2) , (x_2, ∞) quantity lies in one of the intervals. λ the number and roots of the quadratic equation x_1 va x_2 for work, the following theorem is appropriate. 1-theorem. λ quantity (1) to to be less both roots square equations, this

$$\begin{cases} \lambda^2 + \lambda p + q > 0, \\ 2\lambda + p < 0. \end{cases}$$

necessary and sufficient for the inequalities to be satisfied.

2-theorem. λ number (1) quadratic equation x_1 va x_2 so that it lies between the roots $\lambda^2 + \lambda p + q < 0$ fulfillment of the inequality is necessary and sufficient.

3- theorema . λ number (1) quadratic equation x_1 va x_2 to have more roots

$$\begin{cases} \lambda^2 + \lambda p + q > 0, \\ 2\lambda + p > 0 \end{cases}$$

(2)

necessary and sufficient for the inequalities to be satisfied.

Let us consider the geometric interpretation of these statements. It $f(x) = x^2 + px + q$

(2)

(2) quadratic function Ox axis $(x_1, 0)$ and $(x_2, 0)$ let intersect at points. $(x_1 \le x_2) \cdot (\lambda, 0)$ point $(x_1, 0)$ and $(x_2, 0)$ let there be a point that is different from points. Then the above theorem can be interpreted as.

4- theorema . (2) plot the quadratic function Ox of the point of intersection of the axis $(\lambda, 0)$ so that it is to the right of the point

$$\begin{cases} D = p^2 - 4q \ge 0\\ x_0 = -\frac{p}{2} > \lambda\\ f(\lambda) = \lambda^2 + p\lambda + q > 0 \end{cases}$$

fulfillment of the system of inequalities is necessary and sufficient.

5- theorema $(\lambda, 0)$ point (2) graph of a quadratic function Ox so that the axis is located between the intersection points $f(\lambda) = \lambda^2 + p\lambda + q < 0$

necessary and sufficient for the inequality to be appropriate.

6- theorema . (2) graph the quadratic function of Ox the axis intersection $(\lambda, 0)$ point to be to the left of the point, this is

$$\begin{cases} D = p^2 - 4q \ge 0\\ x_0 = -\frac{p}{2} < \lambda\\ f(\lambda) = \lambda^2 + p\lambda + q > 0 \end{cases}$$

necessary and sufficient for the inequality to be appropriate.

The discriminant of a quadratic triangle in the case (2) $D = b^2 - 4ac$ and its derivative f'(x) = 2ax + b from the argument λ if the sign is known, equal to, λ the number $f(x) = ax^2 + bx + c$ ($a \neq 0$) the roots of the quadratic function x_1 and x_2 the relative position of larga can be interpreted as follows, similar to the conditions given above [2]. appropriate the following assertions.

$$1^{0} \ \lambda < x_{1} < x_{2} \Leftrightarrow \begin{cases} D > 0, \\ af(\lambda) > 0, \\ af'(\lambda) > 0. \end{cases}$$
$$2^{0} \ x_{1} < \lambda < x_{2} \Leftrightarrow af(\lambda) \prec 0.$$
$$3^{0} \ x_{1} < x_{2} < \lambda \Leftrightarrow \begin{cases} D > 0, \\ af'(\lambda) > 0, \\ af(\lambda) > 0, \\ af'(\lambda) > 0, \\ af'(\lambda) > 0. \end{cases}$$

1 is an example . k in what sense

 $x^{2} - (k+1)x + k^{2} + k - 8 = 0$ Will one of the roots of the equation be greater than 2 and the other less than 2?

Solution. According to theorem 2 of the above theorem, if we take the left side of the equation $f(x) = x^2 - (k+1)x + k^2 + k - 8$ if considered as a function, so that one of its roots is less than 2, and the second root is greater than 2, f(2) < 0 the fulfillment of the inequality is necessary and sufficient.

 $f(2) = 4 - 2(k+1) + k^2 + k - 8 < 0$

From this

 $k^2 - k - 6 > 0 \qquad \Leftrightarrow \qquad (k - 3)(k + 2) < 0$

So in this equation , $k \in (-2;3)$ one root is less than 2, and the second root is greater than 2.

LITERATURE

 Melnikov I.I., Sergeev I.N. How to decide tasks in mathematics at the entrance exams . Moscow. 1990.
Modenov V.P. Mathematics: A Handbook for Applicants to Universities . Moscow ." New wave " 2002.
Sulaymonov , MMOGL (2022). GEOGEBRA DASTURI VOSITASIDA PLANIMETRIYA MAVZULARIDA MA'RUZA MASHG'ULOTINI TASHKIL ETISH. Central Asian Research Journal for Interdisciplinary Studies (CARJIS) , 2 (6), 35-40. four. PAIZIMATOVA, M. S., ABDUNAZAROVA, D. T., & SULAIMONOV, M. M. W. (2015). THEORY AND METHODS OF TEACHING MATHEMATICS AS AN INDEPENDENT SCIENTIFIC DISCIPLINE. In FUTURE OF SCIENCE-2015 (pp. 389-393).

5. ABDUNAZAROVA, D. T., PAIZIMATOVA, M. S., & SULAIMONOV, M. M. W. (2015). THE PROBLEM OF PREPARING FUTURE TEACHERS FOR INNOVATIVE PEDAGOGICAL ACTIVITIES. In Youth and the 21st Century 2015 (pp. 284-288).

6. Abdikarimov , R. A., Mansurov, M. M., & Akbarov, W. Y. (2019). Numerical study of the flutter of a viscoelastic rigidly clamped rod taking into account the physical and aerodynamic nonlinearities. Bulletin of the Russian State University for the Humanities. Series: Informatics. Information Security. Mathematics , (3), 94-107.

7. Abdikarimov, R. A., Mansurov, M. M., & Akbarov, U. Y. (2019). Numerical study of a flutter of a viscoelastic rigidly clamped rod with regard for the physical and aerodynamic nonlinearities. ВЕСТНИК РГГУ, 3, 95.

eight. Mansurov , M., & Akbarov , U. (2021). FLATTER OF VISCOELASTIC FREE OPEROUS ROD AT THE END. Scientific Bulletin of Namangan State University , 3 (3), 36-42.

9. Zhumakulov , Kh . K ., & Salimov , M . (2016). ABOUT THE METHODS OF CARRYING OUT AND THE STRUCTURE OF THE PEDAGOGICAL EXPERIMENT. Chief Editor , 80.

ten. Esonov , M. M. (2013). Methodical techniques of a creative approach in teaching the theory of images. Vestnik KRAUNTS. Physical and Mathematical Sciences , 7 (2), 78-83.

eleven. Esonov , M. M., & Zunnunova , D. T. (2020). The development of mathematical thinking in geometry lessons through tasks for the study of image parameters. Vestnik KRAUNTS. Physical and Mathematical Sciences , 32 (3), 197-209.

12. Zharov, V. K., & Esonov , M. M. (2019). TRAINING STUDENTS OF MATHEMATICS IN SCIENTIFIC RESEARCH METHODS ON THE BASIS OF SOLVING A COMPLEX OF GEOMETRIC PROBLEMS. Continuum . Maths. Informatics. Education , (4), 10-16.

13. Esonov , M. M., & Esonov , A. M. (2016). Implementation of the methodology of creative approach in the classroom of a special course on the theory of images. Vestnik KRAUNTS. Physical and Mathematical Sciences , (1 (12)), 107-111.

fourteen. Esonov , M. M. (2017). Constructing a line perpendicular to a given line. Vestnik KRAUNTS. Physical and Mathematical Sciences , (2 (18)), 111-116.

fifteen. Esonov, M. M. (2016). PRACTICAL BASES OF TEACHING IMAGE METHODS TO SOLVING PROBLEMS IN THE COURSE OF GEOMETRY. In Theory and Practice of Modern Humanities and Natural Sciences (pp. 155-159).

16. Esonov, M. M. (2014). Designing the study of "Image Techniques" in the context of a creative approach to problem solving. In Theory and Practice of Modern Humanities and Natural Sciences (pp. 259-265).

17. Ergasheva , HM, Mahmudova , OY, & Ahmedova , GA (2020). GEOMETRIC SOLUTION OF ALGEBRAIC PROBLEMS. Scientific Bulletin of Namangan State University , 2 (4), 3-8.

18. Marasulova, Z. A., & Rasulova, G. A. (2014). Information resources as a factor of integration of models and methodologies. Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, (1), 75-80.

19. Mamsliyevich, T. A. (2022). ON A NONLOCAL PROBLEM FOR THE EQUATION OF THE THIRD ORDER WITH MULTIPLE CHARACTERISTICS. INTERNATIONAL JOURNAL OF SOCIAL SCIENCE & INTERDISCIPLINARY RESEARCH ISSN: 2277-3630 Impact factor: 7.429, 11(06), 66-73. 20. Mamsliyevich , TA (2022). ABOUT ONE PROBLEM FOR THE EQUATION OF THE THIRD ORDER WITH A NON-LOCAL CONDITION. INTERNATIONAL JOURNAL OF SOCIAL SCIENCE & INTERDISCIPLINARY RESEARCH ISSN: 2277-3630 Impact factor: 7,429 , 11 (06), 74-79.

21. Muydinjanov, DR (2019). The Holmgren problem for the Helmholtz equation with the three singular coefficients. e-Journal of Analysis and Applied Mathematics , 2019 (1), 15-30.

22. Letter , Б. М. (1994). Get the best results from your favorite

23. Ergashev , A. A., & Tolibzhonova , Sh. A. (2020). The main components of the professional education of a teacher of mathematics. Vestnik KRAUNTS. Physical and Mathematical Sciences , 32 (3), 180-196.

24. Zunnunov , R. T., & Ergashev , A. A. (2021). Bitsadze-Samarsky type problem for mixed type equation of the second kind in a domain whose elliptic part is a quarter of the plane. In Fundamental and Applied Problems of Mathematics and Informatics (pp . 117-20).

25. Zunnunov, R. T., & Ergashev, A. A. (2016). A problem with a shift for a mixed-type equation of the second kind in an unbounded domain. Vestnik KRAUNTS. Physical and Mathematical Sciences, (1 (12)), 26-31.

26. Zunnunov , R. T., & Ergashev , A. A. (2017). Boundary value problem with a shift for a mixed type equation in an unbounded domain. In Actual Problems of Applied Mathematics and Physics (pp. 92-93).

27. Zunnunov, R. T., & Ergashev, A. A. (2016). A problem with a shift for a mixed-type equation of the second kind in an unbounded domain. Vestnik KRAUNTS. Physical and Mathematical Sciences, (1 (12)), 26-31.

28. Zunnunov , R.T., & Ergashev , A.A. (2016). PROBLEM WITH A SHIFT FOR A MIXED-TYPE EQUATION OF THE SECOND KIND IN AN UNBOUNDED DOMAIN. Bulletin KRASEC. Physical and Mathematical Sciences , 12 (1), 21-26.

29. Ergashev , A. A., & Talibzhanova , Sh. A. (2015). Technique for solving the Bitsadze-Samarsky problem for an elliptic type equation in a half-strip . In Theory and Practice of Modern Humanities and Natural Sciences (pp. 160-162).

Alyaviya , O., Yakovenko, V., Ergasheva , D., Usmanova, Sh., & Zunnunov , H. (2014). Evaluation of the intensity and structure of dental caries in students with normal and reduced function of the salivary glands. Stomatologiya , 1 (3-4 (57-58)), 34-38.

30. Marasulova , Z. A., & Rasulova, G. A. (2014). Information resource as a factor of integration of models and methods. Vestnik KRAUNTS. Physical and Mathematical Sciences , (1(8)), 75-80.

31. Rasulova, G. A., Akhmedova , Z. S., & Normatov , M. (2016). METHODS OF STUDYING MATHEMATICAL TERMS AND ENGLISH LANGUAGE IN THE PROCESS OF TEACHING. Student of XXI century , 65.

32. Rasulova, G. A., Akhmedova , Z. S., & Normatov , M. (2016). EDUCATION ISSUES LEARN ENGLISH LANGUAGE IN TERMS OF PROCESSES. Uchenyi XXI veka , (6-2 (19)), 62-65.

33. Rasulova, G. (2022). CASE STADE AND TECHNOLOGY OF USING NONSTANDARD TESTS IN TEACHING GEOMETRY MODULE. Eurasian journal of Mathematical theory and computer sciences, 2(5), 40-43.

34. Ergasheva, H. M., Mahmudova, O. Y., & Ahmedova, G. A. (2020). GEOMETRIC SOLUTION OF ALGEBRAIC PROBLEMS. Scientific Bulletin of Namangan State University, 2(4), 3-8.

35. Muydinjonov, Z., & Muydinjonov, D. (2022). INFORMATION, COMMUNICATION AND TECHNOLOGY (ICT) IS FOR TEACHER AND STUDENT.

36. Muydinjonov, Z., & Muydinjonov, D. (2022). VIRTUAL LABORATORIES. Eurasian Journal of Academic Research, 2(6), 1031-1034.

37. Muydinjanov, D. R. (2019). Holmgren problem for Helmholtz equation with the three singular coefficients. e-Journal of Analysis and Applied Mathematics, 2019(1), 15-30.

38. Rahmatullaev, M. M., Rafikov, F. K., & Azamov, S. (2021). On the Constructive Description of Gibbs Measures for the Potts Model on a Cayley Tree. Ukrainian Mathematical Journal, 73(7), 1092-1106.

39. Rahmatullaev , M., Rafikov , F.K. , & Azamov , SK (2021). About constructive descriptions of measures Gibbs for the model Potts on the tree Kelly . Ukrains ' kyi Mathematychnyi Zhurnal , 73 (7), 938-950.

40. Petrosyan, V. A., & Rafikov, F. M. (1980). Polarographic study of aliphatic nitro compounds. Bulletin of the Academy of Sciences of the USSR, Division of chemical science, 29(9), 1429-1431.

41. Formanov, S. K., & Jurayev, S. (2021). On Transient Phenomena in Branching Random Processes with Discrete Time. Lobachevskii Journal of Mathematics, 42(12), 2777-2784.