NOVATEUR PUBLICATIONS

JournalNX- A Multidisciplinary Peer Reviewed Journal

ISSN No: 2581 - 4230 VOLUME 11, ISSUE 11, November - 2025

"PARTIALREPLACEMENTOFCOARSEAGGREGATEBYJHAMA BRICK"

Prof. Nagnath Bibhishan Raut¹
Miss. Patil Shruti Bhimashankar²,
Miss. Zirmire Arpita Pralhad³,
Miss. Magar Vaishnavi Narsing⁴,
Miss. Rodge Nikita Bibhishan⁵,
Miss. Virgat Mohini Yaday⁶

1 Professor, STB College of Engineering, Tuljapur, Dharashiv, Maharashtra, India 2,3,4,5,6Students B.Tech Civil Engineering, STB College of Engineering, Tuljapur, Dharashiv, Maharashtra, India

Abstract:

The increasing demand for construction materials necessitates the exploration of alternative and sustainable materials to supplement conventional resources. This study investigates the feasibility of partially replacing coarse aggregate in concrete with Jhama bricks, a type of over- burnt brick that is abundantly available in certain regions. The objective is to evaluate the mechanical and durability properties of concrete while promoting waste utilization and reducing dependency on natural aggregates.

Theres earch involves preparing concrete mixtures with varying percentages (e.g., 10%, 20%, 30%) of Jhama brickaggregatesasa substitutefor conventional coarse aggregates. Experimental tests are conducted to assess key properties such as workability, compressive strength, tensile strength, and water absorption. Additionally, a comparative analysis is performed to evaluate the environmental and economic benefits of using Jhama brick aggregates.

Preliminary results indicate that Jhama bricks exhibit sufficient mechanical strength and bonding properties to serve as a viable partial replacement. Concrete with a 20% substitution shows promising compressive strength, making it suitable for certain structural and non-structural applications. The study concludes with recommendations for practical implementation and further research to optimize mixdesign and addresslong-term performance.

INTRODUCTION:

Concrete is produced by mixing cement, sand, coarse aggregate and water to producedmaterialthatcanbemoldedintoalmostany shape. The major volume concrete is filled with aggregate. The inclusion of aggregate in concrete reduces its drying shrinkage properties and improves many other properties such as compressive strength etc. But it is costly to transport, so local sources are needed to reduce the cost of transport, but due to geographical constraints this is not available at all places, thereforeitnecessitatesfindingothersourcesandalternative from local sources.

IhamaClassBrick:

Bricks are a versatile and durable building and construction material with good load bearingproperties. Various researchers havebeencarriedoutinporosity,permeabilityandabsorptionof

ISSN No: 2581 - 4230

VOLUME 11, ISSUE 11, November - 2025

brick. The traditional clay bricks are manually produced by pressingclaywith certainamountofsandinthewooden mould. Then the wet bricks are first dried in the sun and air and transported to the brick kiln for subsequent burning process. The then bricks are burntuptotemperatureof800-900Cin thebrick kiln. temperature in the brickkilnisuncontrolledthenthebricks areburnt excessivelyuptothetemperature 1100-1200C. Dueto become this the bricks are sold cheaper they at rate out of shape. Therefore, this type of brickisk nown as overburntbrick. These bricks are also known as Jhama

LITERATUREREVIEW:

Bidve Ganesh Shivkant (2019) This project presents the effects of over burnt brick bat inclusion on the mechanical properties of concrete matrix in wet and hardenedstateproperties. For checking the mechanical properties of over burnt brick bat-based concrete used partially replaced overburnt brick bat with coarse aggregate.

Buddhi Raj Joshi (2020) investigated the use of ova burned bricka courseaggregate in concrete. The study aimed toseehowcrushed bricksarecompared toburnt bricks coarse aggregate in traditional concrete. The results of 28 days of compressive strength of natural stone aggregate a 0.45 and 0.5 Water-cement ratios were 21. 1.9Mpa and 20.2Mpa,respectively, for M20. The compressive strength of crushed over burnt brick aggregate after 28 days was 24.9 Mpa and 22.4 Mpa, respectively, at 0.45 and 0.5 Water-cement ratios.

Proof, G.N. Shete and Bidve Ganesh Shivkanth 2019) described the usage of OVER BURNT brickbus as coarse aggregate for concrete. The study aimed to see how crushed brick bats compared to burnt brickhats as course material in conventional concrete. With 7 and 28 days of OVERBURNT brick hat waste, the compressive strength increases from 0% to 20%, but after subsequent increases in the percentage of overburnt brickbut waste, compressive strength decreases.

1.1 MATERIALS

Cement

Cementisdefined asabinding agenthatisused bind various construction materials. Given its adhesive and cohesive properties, it is an essential ingredient of concrete and mortar. Cement is mixed with water to form a paste that binds aggregates like sand or crushedrocks. Calcium, silicon, iron and aluminum compounds are closely ground to form a fine powdered product-cement.

Sr.No	Properties	TestResult
1	SpecificGravity	3.15
2	InitialSettingTime	30Min
3	FinalSettingTime	490Min
4	Soundness	10mm

FineAggregate

Fine aggregates are small-sized particles, each with a specific fine aggregate size classification, used extensively in construction. They typically consist of sand, crushed stone, or crushed slag with a diameter of less than 9.5 mm. These aggregates are essential in mixing concrete and mortar togive themixtures as moother consistency. Fine aggregates also help fill the tiny gaps between larger stones in concrete, improving the structure soverall stability and appearance. They are crucial for achieving the right texture and strength in various construction projects

Sr.No	Properties	TestResult
1	SpecificGravity	2.74
2	FinenessModulus	2.85
3	GradingZone	2
4	Density	717 Kg/M3

CoarseAggregate

Coarse aggregates are irregular broken stone or naturally- occurringroundedgravelused for making concrete. Materials which are large to be retained on 4.7 mms ieves ize are called coarse aggregates, and its maximum size can be up to 63 mm.

Coarseaggregatesaregenerallyobtainedbyblastinginstone quarriesorbybreakingthembyhandor bycrushers. Machine crushed stones consist of stones of various sizes whereas Hand broken aggregates consist of only single size.

Sr.No	Properties	TestResult	
1	ImpactTest	39%	
2	AbractionTest	40%	
3	SieveAnalysis	3.75	
4	WaterAbsorpition	2%	
5	Shape	Anngular	

JhamaBricks

Jhamabricksareover-burntorexcessivelyfiredclaybricks,often discardedaswasteduringproduction. They are characterized by

theirhard,dense,darkcolor,andirregularshapes,makingthem stronger than regular burnt clay bricks. Jhama bricks are often usedascoarseaggregateinconcreteorasalow-costalternative for foundations and

ISSN No: 2581 - 4230

VOLUME 11, ISSUE 11, November - 2025

road bases.

Over-Firing: Jhama bricks are produced when clay is fired at temperatures exceedingthenormalrange(1100-1200°C), causing them to be over-burnt and sometimes melt.

Water:

works Generally, quality of water for construction are same as drinkingwater. This is to ensure that the water is reasonably free from such impurities as suspended solids, dissolvedsalts, whichmayadverselyaffectthepropertiesofthe organic and concrete, especially the setting, hardening, strength, durability, pit value, etc.

Thewatershallbecleanandshallnotcontainsugar, molassesor Gur ortheirderivatives, or sewage, oils, organic substances.

TESTPERFORMEDONMATERIAL:

SieveAnalysis

This test determines the distribution of particle sizes within a sample of Jhama brick.

Ithelpsunderstandthebrick's gradation, which can influence its strength, durability, and suitability for different construction purposes.

Sieve	Weight	%Retained	Cummulative %	
Size	Retained	Retained		
40	416	20.26	20.26	
25	485	24.25	44.51	
20	417	20.55	65.06	
12.5	260	13	78.06	
10	105	5.11	83.17	
4.75	18	0.87	84.04	

- Cumulative%Retained= 375.1
- FinenessModulus=Cumulative%Retained/100

2=375.1/100=3.75

ImpactTestonJhamaBrick:

Determination of Aggregate Impact Value Impact Teston Aggregates is done to carry out to:

- Determine the impact value of the road aggregates.
- Assesstheirsuitabilityinroadconstructiononthebasis of impact value.
- Thepropertyofamaterialtoresistimpactisknown as toughness. Due to movement of vehicles on the road the aggregates are subjected to impact resulting in their breaking down into smaller pieces.
- The aggregates should therefore have sufficient toughnesstoresisttheir disintegration due to impact. This characteristic is measured by impact value test.

RESULT:

- Weight=300gm(A)
- Passingweight=118gm(B)
- Retainedweight=233gm
- Aggregateimpactvalue= B/A*100
- 118/300*100=39%
- StandardResult =
- Forordinaryconcrete<45%
- FORwearingsurface<30%

AbrasionTestonJhamaBrick:

To determine the abrasion value and hardness property of aggregatesasperIS:2386(PartIV)-1963. Due to the movements of traffic, the road stones used in the surfacing course are subjected to wearing actions at the top. When traffic moves on the road the soil particle (sand) which comes between the wheel and road stone. Abrasion testare carriedout to test the hardness

propertyofstonesandtodecidewhethertheyaresuitableforthe different road structure.

Result

- WeightofBricks= 5kg
- Ovendrybricks = 4.995kg(A)
- Retainedweightonsieve=2.953kg(B)
- Abrasiontestvalue=A-B/A*100
- 4.995-2.953/4.995*100=40%
- Standardresult=
- ForordinaryConcrete=45%

METHODOLOGY

- 1. Atfirst, collected thematerials that are required formaking the Jhama class brick bat-based concrete. Collected coarse aggregates, sandand the Jhama class brick coarse aggregate asper design of mix proportion M20.
- 2. Then performed various tests on those material such as, impact test, abrasion test and sieve analysis etc. to know the characteristic strength of those material.
- 3. ThenmixdesignpreparationaccordingtotheIS10262-2009. Prepared 6 samples by taking class brick to coarse aggregate ratios 0%,5%, 10%, 15%, 20%, 25%.
- 4. Afterthatperformedcastingoperationtomaketheconcrete.
- 5. After mixtures get hardened perform the following test on every sample to their engineering properties, Compressive strength.
- 6. Then, compared the results obtained for each sample in the above test, and find out which composition yields better concrete.

RESULTSANDDISCUSSION

Compressivestrengthtest

The compressive strength of any material is defined as the resistance to failure under the action of compressive forces. Especially for concrete, compressive strength is an important parameter to determine the performance of the material during service conditions. Concrete mix can be designed or proportioned to obtain the required engineering and durability properties as required by the design engineer. Some of the other engineering properties of hardened concrete includes Elastic Modulus, Tensile Strength, Creep coefficients, density, coefficient of thermal expansion etc.

SR.NO	%OF JHA MA	WEIG HTIN		COMPRESS IVE	
	BRIC	GRAM		STRENGTH IN N/MM2	
	K				
		14DAYS	28DAYS	14DAYS	28 DAYS
1	0%	8110	8100	24.44	31.13
2	5%	7980	8000	22.30	25.50
3	10%	7940	7970	20.00	23.00
4	15%	7927	7950	19.00	22.50
5	20%	7915	7935	18.40	21.95
6	25%	7904	7910	17.40	21.08

Procedure:

Place the prepared concrete mix in the steel cube mould for casting.

Once it sets, after 24 hours remove the concrete cube from the mould.

Keepthetestspecimenssubmergedunderwaterforstipulated time.

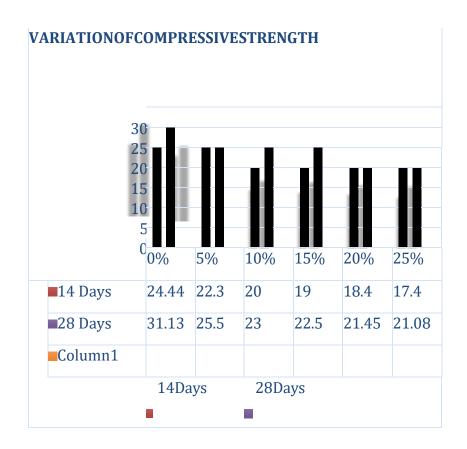
Asmentioned, the specimen must be keptinwater for 7 or 14 or 28 days and for every 7 days the water is changed.

Ensurethatconcretespecimenmustbewelldriedbefore placing it on the UTM.

Weight of samples is noted in order to proceed with testing and it must not be less than 8.1Kg. Testing specimens are placed in the space between bearing surfaces.

Care must be taken to prevent the existence of any loose material or grit on the metal plates of machine or specimen block.

The concrete cubes are placed on bearing plate and aligned properly with the center of thrust in the testing machine plates.


Theloadingmustbeappliedaxiallyonspecimenwithoutany shock and increased at therate of 140kg/sq. cm/min. till the specimen collapse.

Due to the constant application of load, the specimen starts cracking at a point & final break down of the specimen must be noted.

without any shock and increased at the rate of 140kg/sq. cm/min. till the specimen collapse.

Due to the constant application of load, the specimen starts cracking at a point & final break down of the specimen must be noted.

VOLUME 11, ISSUE 11, November - 2025

CONCLUSION:

The following inferences are drawn based on the experimental investigation of the strength and workability of concretewithpartialreplacementofcoarseaggregates by brick ballast.

- 1) The 15% replacement of jhama brick is considered the best because of strength and economy, hence we use it in loaded structures.
- 2) Up to 15% of coarse aggregates may be replaced with brick ballasts.
- 3) The 25% replacement of jhama brick is considered as good replacement because of strengthandeconomy, hence we use it in moderately loaded structures.
- 4) This study has found that crushed bricks will be used satisfactorily as a coarsecombination for creating concrete of adequate strength characteristics.
- 5) Before therecommendation for use in the field, several tests should be conducted for the concrete with replaced coarse aggregates of different proportions.

REFERENCES:

- 1. Bazaz J.B., Khayati M., (2012) —Properties and Performance of concrete made with recycled low quality crushed brick||, Journal of Material in Civil Engineering. Vol.-24., pp.330-338.
- 2. Chi-Sun Poon, Dixon Chan., (2005), —Effects of Contaminants on The Properties of Concrete Paving Blocks Prepared with recycled concrete aggregate. Construction And Building Materials., pp.164-175

NOVATEUR PUBLICATIONS

JournalNX- A Multidisciplinary Peer Reviewed Journal

ISSN No: 2581 - 4230

VOLUME 11, ISSUE 11, November - 2025

- 3. EldinN.N.,AhmadB.,(1993),—RubbertireParticleas concrete aggregate. Journal of Material in Civil Engineering., Vol.- 5,pp.478-496.
- 4. Gopinandan Roy, Jayanta pal, (2012), —Use ofBrick AggregateinStandardConcreteandItsPerformancein Elevated Temperature. International Journal of Engineering and Technology, Vol. 5, No. 4IS10262-2009.
- 5. Khalaf F.M., Devnny A.S., (2002), —New test for porosity and water absorption of fired clay brick Journal of Material in Civil Engineering, Vol.-17, pp 456-464.
- 6. KhalafF.M.,DevannyA.S.,(2004),—Recyclingof demolished masonry rubble as coarse aggregate in concrete review. Journal of Material in Civil Engineering., Vol.-16, PP.331-340.
- 7. KhalafF.M.,DevannyA.S.,(2005),—Properties of newandrecycledclaybrickaggregate for usein concrete. Journal of Material in Civil Engineering., Vol.-17, pp. 456-464.
- 8. Khaldoun Rahal, (2005), —Mechanical Properties of Concrete withRecycledCoarseAggregate||,Buildingand Environmental Science, pp 407-415.
- 9. Khaloo.A.R.(1994).—Properties of concrete using clinker brick as coarse aggregate.