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Abstract 

In probability theory, methods and analytical apparatus from various branches of mathematical 

analysis are widely used. Simple solutions to many problems encountered in probability theory, 

especially those involving sums of uncorrelated random variables, can be found using characteristic 

functions, developed in mathematical analysis and known as Fourier transforms. The fact that the 

method of characteristic functions is one of the main tools of the analytical apparatus of probability 

theory can be clearly seen in the proof of limit theorems, in particular, in the proof of the central limit 

theorem, which generalizes the Moivre-Laplace theorem. In this article, we will limit ourselves to 

describing the main properties of characteristic functions. 
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Annotatsiya 

Ehtimollar nazariyasida matematik analizdagi turli bo‘limlarning metodlari va analitik apparatlari 

keng qo‘llaniladi. Ehtimollar nazariyasida uchraydigan juda ko‘p masalalarning ayniqsa o‘zaro 

bog‘liqsiz tasodifiy miqdorlarning yig‘indisi bilan bog‘liq bo‘lgan masalalarning sodda yechimlarini 

matematik analizda rivojlantirilgan va Furye almashtirishlari nomi bilan ma’lum bo‘lgan хarakteristik 

funksiyalar yordamida topish mumkin. Хarakteristik funksiyalar metodi ehtimollar nazariyasi analitik 

apparatining asosiy vositalaridan biri ekanligini limit teoremalarni isbotlashda, хususan Muavr-Laplas 

teoremasini umumlashtiruvchi markaziy limit teoremani isbotlash jarayonida yaqqol ko‘rishimiz 

mumkin. Ushbu maqolada biz хarakteristik funksiyalarning asosiy хossalarini bayon qilish bilan 

chegaralanamiz. 

 

Аннотация(Russian):  

В теории вероятностей широко используются методы и аналитический аппарат из различных 

разделов математического анализа. Простые решения многих задач, встречающихся в теории 

вероятностей, особенно тех, которые связаны с суммами некоррелированных случайных 

величин, можно найти с помощью характеристических функций, разработанных в 

математическом анализе и известных как преобразования Фурье. Тот факт, что метод 

характеристических функций является одним из основных инструментов аналитического 

аппарата теории вероятностей, ясно виден в доказательстве предельных теорем, в частности, 

в доказательстве центральной предельной теоремы, которая обобщает теорему Муавра-

Лапласа. В этой статье мы ограничимся описанием основных свойств характеристических 

функций 
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The analytical methods of probability theory are based on the functional properties of mathematical 

tools such as characteristic functions and generating functions. These functions are also considered 

important instruments in mathematical analysis. In particular, characteristic functions can be 

regarded as a generalization of the well-known Fourier transforms. 

Let,  ( ), ,W PF  be a probability space, where: 

•   - the sample space, 

• ℱ – a sigma-algebra defined on this space, 

•    – a probability measure. A measurable function that elements of  W the sample space into 

the set  R  ,  ( )x = x w  is called a random variable. . In other words, the preimage 

( ) { }1 : ( )B B-x = w x w Î Î F . 

here , wÎ W and  B  – Borel set or a sigma – algebra defined on the set R  (the system of Borel sets 

( )RB = B ) that is  ( )B Î RB . 

In this case , the random variable x  is said to map the space ( ),WF  into the measurable space 

( ),R B : ( ) ( ): , ,x W ¾ ¾® RF B . By means of this mapping , a probability measure 
x
P  on the 

measurable space ( ),R B is defined as follows: { }{ }B Bx = x ÎP P  

Thus, we obtain a new measurable space ( ), , xPR B . The probability value { }BxP  defined above is 

called the distribution of the random variable  . in particular, if we choose ( );B x= - ¥   then the 

function defined on   

( ){ } { }( ) : ;F x x xx x= x Î - ¥ = x <P P  

is called the distribution function of the random variable x . 

It is clear that the distribution function of a random variable uniquely determines its distribution.  

Definition 1. Let ( )x = x w be a random variable defined mathematical expectation on the probability 

space ( ), ,W PF   

( )( ) d

W

x w wò P  

The mathematical expectation or mean value of the random variable is defined as: 

( ) ( )x dx xdF xxx = =ò òM P

R R

 

which can be written in the form above, where ( ) ( )F x F xx= . 
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From this definition, it is clear that if  x < ¥M  then , x < ¥M . For example, if  

1 ( ) 1 ,F x x xx- > ® ¥  then the random variable  ( )x = x w  does not have a finite mathematical 

expectation.In the process of sufficiently studying the theory of random variables, together with real-

valued random variables ( )x = x w , the concept of complex-valued random variables may also be 

introduced. By general probabilistic theory, we consider a complex random variable as the sum 

1 2( ) ( )ix = x w + x w , where  ( )1 2;x x  is a random vector. Naturally, the mathematical expectation of 

such a random variable is [ ]1 2 1 2( ) ( )i ix = x w + x w = x + xM M M M . Two complex-valued random 

variables 1 2( ) ( )ix = x w + x w  va 1 2( ) ( )ih = h w + h w  are called independent, if the random vectors  

( )1 2;x x  and ( )1 2;h h generate independent  ( )1 2;s x x  and ( )1 2;s h h sigma-algebras. For such 

variables, verifying the identity 

xh = x× hM M M  

 is straightforward. 

Definition  2.  Let ( ), ,W PF  be a probability space. The characteristic function of a real-valued 

random variable ( )x = x w  is the complex-valued function: 

( ) ( )it itxt e e dF xx
x xj = = òM

R

,     t Î R . 

If the distribution function ( ) ( )F x F xx=  has a density ( ) ( )f x F x¢=  , then the characteristic 

function takes the form: 

( ) ( )it itxt e e f x dxx
xj = = òM

R

 

As can be seen, this function is the Fourier transform of the function ( )f x  known from mathematical 

analysis. In the general case, however, the characteristic function ( )F x  is the Fourier–Stieltjes 

transform applied to the distribution function. For any random variable, the characteristic function 

always exists. This fact is confirmed by the following inequality, which holds for all t Î R : 

( ) ( ) ( ) ( ) 1itx itxt e dF x e dF x dF xxj = £ £ =ò ò ò
R R R

. 

This follows from the Euler formula known from complex analysis: 

2 2cos sin cos sin 1itxe tx i tx tx tx= + = + = . 

And from the property of the distribution function: ( ) 1dF x
¥

- ¥
=ò . 

Characteristic functions serve as an excellent mathematical tool in studying sums of independent 

random variables. We now focus on exactly these aspects. 

We begin by studying the main properties of characteristic functions: 
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1°. For any random variable: 

(0) 1xj = . 

2°. If a random variable h  is obtained by a linear transformation of  x , that is: 

, ,a b a bh = x + Î R , then: 

( ) ( )itbt e ath xj = j . 

3°. If 1 2, , ... , nx x x  are independent random variables, then the characteristic function of their sum 

1 2 ...n nS = x + x + + x  is   

1 2
( ) ( ) ( ) ... ( )

n nS t t t tx x xj = j ×j × ×j . 

4°. The characteristic function is uniformly continuous. 

5°. If a random variable x  has a finite k -th moment, that is:  

,
k

kx < ¥ ÎM N  

then its characteristic function ( )txj  has a continuous derivative of order k , and: 

( )(0)k
k

ki

xj
x =M . 

6°. The function ( )tj  is a real-valued function if and only if the distribution function ( )F x  is 

symmetric,  

( ) { }( ) ( ) ( ) , , :

B B

dF x dF x t B B x x B

-

é ù
ê ú é ù= Û j Î Î - = - Îê ú ê úë û
ê úë û
ò ò R RB . 

 

Now, using the properties of characteristic functions provided above, we compute the characteristic 

functions of some distributions frequently used in probability theory. 

1. “Unit” distribution. Recall that a random variable x  is said to have a unit (degenerate) distribution 

if it takes only one fixed value a with probability 1, i.e., ( ) 1P ax = = . In this case, 

( ) it iatt Me ex

x
j = = . 

2. Bernoulli distribution. Let the random variable    take values 

1

0 1

, ,

, .

ehtimolligi p

ehtimolligi p
x

ìïï= í
ï -ïî

 

Then the characteristic function is  

( ) ( )0 1 1it it it itt Me e p e p pe px

x
j ×= = × + - = + - . 

3. Binomial distribution. Let    take values 0 1, ,...,m n=  with probabilities   

( ) ( )1
n mm m

nP m C p px
-

= = -    0 1, ,...,m n=  
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This random variable can be represented as 1 ... nx x x= + + , where ix  are independent Bernoulli 

random variables with parameter p. Therefore, using independence, 

( ) ( )1 1
...

...n n
it it ititt Me Me Me Me
x x x xx

x
j

+ +
= = = × × =  

( )1
nitpe p= + - . 

4. Poisson distribution. A random variable ix  takes values 0 1 2, , ,....k =  

( ) 0 0 1 2, , , , , ...
!

k

P k e k
k

ll
x l-= = > = . 

then,  

( ) ( )
0 0 !

k
it itk itk

k k

t Me e P k e e
k

x l
x

l
j x

¥ ¥
-

= =

= = = =å å  

( ) ( )1

0 !

itit

kit
ee

k

e
e e e e

k

ll l l
l¥ -- -

=

= = × =å . 

5. Geometrik taqsimot. 

( ) 1 1 2 1, , , ...,nP n pq n q px -= = = = -  

and  

( ) ( )
1

1

1 1 1
.

itn
it itn n it it

it
n n

pe
t Me e pq pe qe

qe

x

x
j

¥ ¥ -
-

= =

= = = =
-

å å  

6. Normal distribution. A continuous random variable ξ is said to have a normal (or Gaussian) 

distribution if its density function is given by  

( )
( )

2

2

1

22
, , exp ,

x a
f x a xs

sps

ì üï ïï ï-ï ïï ï= - - ¥ < < ¥í ý
ï ïï ïï ïï ïî þ

, 

where ( )2,a s -  are parameters, 0,a R sÎ > . 

Let us find the characteristic function of the standard normal distribution with parameters (0,1): 

( )

2

2
1

2

x
itx

itt Me e dxx
x
j

p

¥ -

- ¥

= = ò                                      (1). 

Differentiating the equation (1) with respect to t, we get 

( )

2

2

2

x
itxi

t xe dxj
p

¥ -

- ¥

¢ = ò . 

If we differentiate again and perform integration by parts, we obtain 
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( ) ( )

2 2

2 2

2

x x
itx itxi

t e it e dx t tj j
p

¥

¥- -

- ¥
- ¥

é ù
æ öê ú÷ç ÷ê úç ÷¢ ç= - + = -÷ê úç ÷çê ú÷ç ÷è øê ú
ë û

ò . 

Hence we obtain the relation (for the characteristic function of the standard normal distribution)  

( ) ( ) 0t t tj j¢ + =      (2) 

With the initial condition , ( )0 1j =  the solution of this differential equation is 

( )

2

2

t

t ej
-

=      (3) 

Thus we have found the characteristic function. 

Now let us find the characteristic function of a normal distribution with parameters ( )2,a s . If we 

denote by cx  a standard normal random variable whose characteristic function is given by (3), then 

any normal random variable x  with parameters ( )2,a s  can be written in the form 

c ax s x= + . 

Therefore 

( ) ( ) ( )

2 2

2

c c

t
iat

iat
a

t t e t e

s

x s x x
j j j s

-

+
= = × = . 

7. Uniform distribution on  [ ],a b . In this case, the distribution is continuous, and its density function 

is 

( )
1

0

, , ,

, , .

x a b
f x b a

x a b

ìïï é ùÎï ê úï ë û= -í
ï é ùï Îï ê úë ûïî

 

The corresponding characteristic function is  

 ( ) ( )
( )

1
b itb ita

itx itx

a

e e
t e f x dx e dx

b a it b a
j

¥

- ¥

-
= = =

- -
ò ò  

Let us recall some special cases: 

1) If  ,a l b l= - =   then  

( )
2

sin
.

ilt ilte e lt
t

itl lt
j

--
= =  

2) 0,a b L= =   then 

( )
1itLe

t
itL

j
-

= . 
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8. Gamma distribution. In this case, the density function is  

 ( )
( )

1

0,x
x

f x e x
a

a
a

-
-= ³

G
. 

Let us denote by ( )ta
j the characteristic function corresponding to this density. Before proceeding, 

let us confirm the following fact: 

It is easy to see that the density function, ( )f x
a b+

 is obtained as the composition of the functions 

( )f x
a

  and ( )f x
b

. Indeed, 

  ( ) ( ) ( )
( ) ( )

( )
11

0 0

x xx

a

e
f x f x u f u du u x u du

ba

b b a
a b

-
--

+
= - = -

G ×G
ò ò  

( ) ( )
( )

11
11

0

1
xx e

y y dy
a b

ba

a b

+ - -
--×

= × -
G ×G

ò . 

The last integral is known as Euler’s ( ),B a b -integral and is related to the Gamma function:  

( )
( ) ( )

( )
,B

a b
a b

a b

G ×G
=
G +

 

So, ( )
( )

1

0,x
x

f x e x
a b

a b
a b

+ -
-

+
= ³
G +

 equality is apprioprite. We note that *f f f
a b a b+

= .  

Let us first consider the case 1a = , then we count  

( ) ( )1 1

0

itxt e f x dxj

¥

= ò . 

 We compute this integral. By integrating by parts, we obtain  

( ) ( )1 1
0

0

1itx x itx xt e it e dx it tj j

¥¥
- -= - + = +ò . 

( )1

1

1
t

it
j =

-
 (5) 

Thus we find the expression (5).  

For any  1n ³ , using  (4) and  (5), we obtain  

( )
( )

1

1
n n
t

it

j =

-

. 

From this, it follows that  
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 ( ) ( ) ( ) ( )
1

1 1 1
1

/
,

n

n

n n

t t t itj j j
-

é ù
ê ú

= = -ê ú
ê ú
ë û

,  

( ) ( ) ( )1
1

/

m

m n

m

n n

t t itj j
-

é ù
ê ú

= = -ê ú
ê ú
ë û

. 

Thus we can write the following equalities. Hence for any rational  a :  

( ) ( )1t it
a

a
j

-
= -     (6) 

Therefore, (6) also holds for any real a . Since the density function ( )p xa   is continuous with respect 

to the parameter a ,   

( ) ( ),
n

n
f x f x
a a

a a® ® , 

and consequently , 

( ) ( )
n
t t

a a
j j® . 

Thus formula  (6) holds for all  0a > . If a  is a rational number, then condition  ( )0 1
a
j =  ensures 

that the limit is consistent.  

In probability theory, in many applications it is important to find the distribution function 

corresponding to a given characteristic function. The following theorem shows that the characteristic 

function uniquely determines the distribution.  

Theorem 1. (Uniqueness Theorem). If two distribution functions ( )F x  and ( )G x  have the same 

characteristic function, i.e. 

( ) ( )itx itxe dF x e dG x=ò ò
R R

, 

then these functions are identical: 

( ) ( )F x G xº . 

The theorem stated above shows that the distribution function of a random variable can be recovered 

uniquely from its characteristic function. 

Theorem 2. (Inversion Formula). Let a distribution function ( )F x  and its characteristic function be 

given. The following statements hold at every point , ( )a b a b< , where ( )F F x= is continuous: 

1
( ) ( ) ( )

2

ita itbe e
F b F a t dt

it

- --
- = j

p ò
R

; 

If  

       ( )t dtj < ¥ò
R

   ,then  ( )F F x=   has a density function, and   
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( ) ( )

x

F x f v dv

- ¥

= ò ,  

and moreover  

1
( ) ( )

2

itxf x e t dt-= j
p ò
R

. 

Let   

1 2, ,..., ,...nx x x                                                 (7) 

be a sequence of mutually independent and identically distributed random variables. Let  

1 ...n nS x x= + + . 

From the course of probability theory, we know that the Law of Large Numbers holds for such a 

sequence, meaning the average  
k

M ax =  exists. However, for the sequence  (7), for the central limit 

theorem to hold, it is required that the variances of the independent random variables exist, that is, 
2

nDx s=   

Then the standardized and normalized random variable 

n n n
n

n

S MS S na

DS n
h

s

- -
= =  

 will have the distribution function ( )
nF x ,  and its limit distribution is the standard normal 

distribution with parameters (0,1), denoted by ( )xF .This means that 

( )
2 21

2

/ .

x
ux e du

p

-

- ¥

F = ò  

Levy’s Theorem. If  
20 s< < ¥ , then the convergence   

( ) ( ) 0sup , ,n
x

F x x n- F ® ® ¥  

holds, i.e., (7) becomes the central limit theorem.  

In this case, the sequence { }1,
n
nh ³  converges asymptotically to the normal distribution. 

Proof. Without loss of generality, we may assume 0a = , because otherwise the sequence 

{ }1 1,n n a nx x= - ³  can be considered instead, and then the same results apply. 

It can be shown that the characteristic function 

( )
2 2/n

it tt Me e
h

x
j -= ®  

is sufficient. Indeed, if 0a =  , then 

( ) ( ) 1, ,
n

itn t
t f f t Ee

n

x

h
j

s

æ ö
÷ç ÷= =ç ÷ç ÷çè ø

, 
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and the existence of 
2
n

M x  ensures the existence of ( )tj ¢¢ . Applying Taylor’s formula, we get 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2

2 20 0 0 1
2 2

' ''
t t

t t o t o t
s

j j j j= + + × + = - +  

Thus, as n ® ¥ ,  

( )
2 22

1
2

ln ln
n

t t
t n o

nn

s
j

s

é ùæ ö æ öê ú÷ ÷ç ç÷ ÷= - × + =çê úç÷ ÷ç ç ÷÷ ççê úè øè ø
ê úë û

= 𝑛 (−
𝑡2

2𝑛
+ 𝑜 (

𝑡2

𝑛
)) = −

𝑡2

2
+ 𝑜(1) → −

𝑡2

2
. 

The theorem has been proved. 
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