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Abstract 

The article formulates a generalized model of an elastic-viscous fluid, in particular, from this 

model one can obtain Newtonian, generalized Newtonian, Maxwell and other models. 

Basically, the generalized model of a viscoelastic fluid is built on the basis of the topological 

hypothesis of Astarte and Mariucci and the axiomatic principles of Truesdell and Knoll. The 

developed generalized model of a viscoelastic fluid is convenient for solving engineering 

problems and thus is easily implemented for studying the flow of non-Newtonian fluids in a 

flat channel and in a circular cylindrical tube. 

Keywords: Elastic, viscous, Newton's model, Maxwell's model, axiom, flat channel, 

cylindrical tube. 

 

Introduction 

Studies [3-5] show that solving the problem of unsteady flow of a viscoelastic fluid in 

pipelines leads to significant mathematical difficulties. Therefore, when solving problems, 

methods of simplification are used, or the problem [7,8] is solved in a one-dimensional 

formulation with lumped velocities over the pipe section. In the majority of works [3-5], it is 

argued that transient processes occur during unsteady flow, which significantly depend on 

the properties of the fluids flowing in them. In this article, specific problems are solved about 

the unsteady flow of an elastic-viscous fluid in a flat channel and transient processes are 

analyzed. In addition, when solving one-dimensional problems, the data obtained are not 

only of great importance for the detection of new hydrodynamic effects, but also are a 

reliable source for comparison with the results of studying an elastic-viscous fluid in a more 

complex formulation. On the basis of the rheological models of an elastic-viscous fluid 

proposed in [4,5], we will solve non-stationary problems in pipes and channels, where the 

fluid is assumed to be elastic-viscous and incompressible, and its motion is laminar and 

axisymmetric. 

 

Main part 

In this case, the movements of the liquid in the pipes, taking into account its rheological 

properties, are described by simplified equations of the following form 
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To solve the system of equations (1), it is necessary to formulate the initial and boundary 

conditions. We assume that at, the liquid in the initial state is assumed to be "at rest", i.e. 
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Boundary value problems for equations (1) with boundary and initial conditions (2) and (3) 

can be solved in the final form only for flows, when 1,1  kk gf in equation (1), and for 

a fluid with a relaxation time spectrum 
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The most complex fluid flows with a nonlinear spectrum of relaxation times require the use 

of a cumbersome apparatus of mathematical physics or a numerical method. Linearized 

equations (1) and initial and boundary conditions (2), (3) using the Laplace-Carson 

transformation [6], in time, taking into account the initial conditions, can be written as: 
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(4) 

From equation (4) one can find rx : 
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Substituting the obtained expression (5) into equation (4), we obtain 
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In equation (6) 
x

p




 does not depend on the channel width, so its solution can be obtained in 

the form of a trigonometric function. It is believed that the variable x  is a "frozen" parameter 

in the equation: 
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This expression only has simple poles 
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where  

nis is the root of the transcendental equation 
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is the Shulman-Husid rheological equation, where 2
EL

h
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 .  It can be solved  
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Hence, ( ) ( )s s     in this case, all the 

results obtained for the Newtonian fluid are true for an elastic-viscous fluid when the 

rheological equations are given in the form of the Shulman-Husid model. 

 

Conclusion 

In the second case, when  1s  (8) is the transcendental equation when the expression 

( )s  is replaced by its asymptotic expression (1 1/ )
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Then (8) at 2  has the form  
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The final solution would be like this  
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Using the obtained solution, numerical calculations can be made for the Shulman-Husid 

model. 
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