
NOVATEUR PUBLICATIONS
JournalNX- A Multidisciplinary Peer Reviewed Journal

 ISSN No: 2581 - 4230
VOLUME 6, ISSUE 12, Dec. -2020

322 | P a g e

WAYS TO LEARN AND FACILITATE THE DIFFICULTIES IN THE PROCESS

OF WORKING WITH LISTS ON THE DATA STRUCTURE AND

ALGORITHMS MODULE
NURJABOVA DILAFRUZ SHUKRULLAEVNA

Applicant, Researcher Tuit Karshi branch, department Software Engineering, Karshi,

Uzbekistan. dilyaranur1986@gmail.com

ULASHEVA SHAXLO TAGAEVNA,

Student Tuit Karshi branch, department Software Engineering, Karshi, Uzbekistan

RUSTAMOV MAKRUF AKMALOVICH.

Student Tuit Karshi branch, department Software Engineering, Karshi, Uzbekistan

ABSTRACT:

This article is written about the relief

of working with programs in the

educational process, that is, in order to

increase the knowledge of the students and

learners. Using programming, it is

important to use the data structure and

theirs algorithms, implementing it,

obtaining results in practice. The use of lists

in the Dynamic Data Structure in different

views is also mentioned separately.

KEYWORDS: List, Dynamic Data Structure,

algorithm, module, node, link, memory,

pointer.

INTRODUCTION;

Often in serious programs, you need to

use data whose size and structure must change

as you work. Dynamic arrays do not help here,

because you cannot say in advance how much

memory you need to allocate – this is only

found out in the process of working. For

example, you need to analyze the text and

determine which words and how many occur

in it, and these words need to be arranged

alphabetically.

In such cases, use data of a special

structure, which are separate elements

associated with links.

Each element (node) consists of two

memory areas: data fields and links. Links are

addresses of other nodes of the same type that

this element is logically associated with. In the

C language for the organization of the links

used variables are pointers. When adding a

new node to such a structure, a new block of

memory is allocated and (using links) links are

established between this element and existing

ones. Null references are used to indicate the

final element in the chain.

In the simplest case, each node contains

only one link. For certainty, we assume that the

problem of frequency analysis of the text is

solved-determining all the words that occur in

the text and their number. In this case, the

item's data area includes a string (no more

than 40 characters long) and an integer.

Each element also contains a link to the

next element. The last item in the list has a null

reference field. In order not to lose the list, we

must store the address of its first node

somewhere (in a variable) – it is called the"

head” of the list. In the program, you need to

declare two new data types-the node of the

Node list and the PNode pointer to it. A node is

a structure that contains three fields-a string,

an integer, and a pointer to the same node.

Rules of the C language allowed the ad

In the future, we will assume that the

head pointer points to the beginning of the list,

mailto:dilyaranur1986@gmail.com

NOVATEUR PUBLICATIONS
JournalNX- A Multidisciplinary Peer Reviewed Journal

 ISSN No: 2581 - 4230
VOLUME 6, ISSUE 12, Dec. -2020

323 | P a g e

that is, declared as

The first letter "P" in the PNode type

name comes from the word pointer.) At the

beginning of the work, there is no element in

the list, so the null address is written to the

head pointer.

In order to add a node to the list, you

must create it, that is, allocate memory for the

node and remember the address of the selected

block. We will assume that we need to add a

node to the list that corresponds to the new

word that is written in the new word variable.

Let's make a function that creates a new node

in memory and returns its address. Note that

when writing data to a node, the structure

fields are accessed via a pointer.

After that, the node must be added to

the list (at the beginning, at the end, or in the

middle).

When adding a new NewNode node to

the top of the list, 1) set the newNode node

reference to the head of the existing list, and 2)

set the head of the list to the new node.

This is how the AddFirst procedure

works. It is assumed that the address of the

beginning of the list is stored in Head. It is

important that the address at the beginning of

the list is passed by reference here and later,

because when a new node is added, it changes

within the procedure.

Given the NewNode address of the new

node and the p address of one of the existing

nodes in the list. You need to insert a new node

after the node with address p in the list. This

operation is performed in two stages:

1) set the link of the NewNode to the node

following the data;

2) Set the link of this node p to NewNode.

You can't change the sequence of

operations, because if you change the link at

node p first, the address of the next node will

be lost.

This addition scheme is the most

complex. The problem is that in the simplest

linear list (it is called a single-linked list,

because the links are directed only in one

direction), in order to get the address of the

previous node, you need to go through the

entire list first.

The task is reduced to either inserting a

node at the beginning of the list (if the specified

node is the first one), or inserting it after the

specified node.

This procedure provides "foolproof"

protection: if a node is specified that is not

present in the list, then at the end of the loop,

the q pointer is NULL and nothing happens.

There is another interesting trick: if you

need to insert a new node NewNode to the set

of node p insert a node after this node, and

then performs data exchange between nodes p

and NewNode. Thus, at p in fact, there will be a

node with new data, and the address of

NewNode – with the data that was in the p site,

i.e. we solved the problem. This technique will

not work if the address of the new node

NewNode is stored somewhere in the program

and then used, because this address will

contain other data. Solving the problem, you

must first find the last node whose reference is

NULL, and then use the insertion procedure

after the specified node. Separately, you need

to handle the case when the list is empty.

In order to go through the entire list and

do something with each of its elements, you

need to start with head and use the next

pointer to move to the next node.

Often you need to find the desired item

in the list (its address or data). Note that the

required item may not exist, so the view ends

when the end of the list is reached. This

approach leads to the following algorithm:

1) Start with the head of the list;

2) While the current element exists (the

pointer is not NULL), check the required

condition and go to the next element;

NOVATEUR PUBLICATIONS
JournalNX- A Multidisciplinary Peer Reviewed Journal

 ISSN No: 2581 - 4230
VOLUME 6, ISSUE 12, Dec. -2020

324 | P a g e

3) Finish when the required item is found or all

items in the list are viewed.

For example, the following function

searches the list for an item that matches the

specified word (for which the word field

matches the specified New Word string) and

returns its address or NULL if there is no such

node.

Let's return to the problem of

constructing an alphabetic-frequency

dictionary. In order to add a new word to the

desired location (in alphabetical order), you

need to find the address of the node before

which you want to insert a new word. This will

be the first node from the beginning of the list

for which the" its" word will be "more" than the

new word. Therefore, it is enough to simply

change the condition in the while loop in the

Find function. Given that the strcmp function

returns the "difference" of the first and second

words.

This function returns the address of the

node before which the new word should be

inserted (when the strcmp function returns a

positive value), or NULL if the word should be

added to the end of the list.

Now you can fully write a program that

processes the input file.txt and compiles an

alphabetic-frequency dictionary for it in the

output file.txt.

The variable n stores the value returned

by the fscanf function (the number of

successfully read elements). If this number is

less than one (the read failed or the data in the

file ran out), the while loop exits.

First, we try to search for this word in

the list using the Find function. If found simply

increase the counter of the found node. If the

word is encountered for the first time, a new

node is created in memory and filled with data.

Then use the Find Place function to determine

which node in the list to add it to.

When the list is ready, open the file for

output and, using a standard pass through the

list, output the found words and counter

values.

This procedure is also associated with

searching for a given node throughout the list,

since we need to change the link from the

previous node, and it is not possible to go

directly to it. If we find a node that is followed

by the node being deleted, we just need to

rearrange the link.

The case when the first item in the list is

deleted is handled separately. Deleting a node

frees up the memory it used to occupy.

Separately, we consider the case when

the first item in the list is deleted. In this case,

the address of the node being deleted is the

same as the address of the head of the Head

list, and you just need to write the address of

the next element to the Head.

You have noticed that for the list variant

considered, you need to handle border cases

separately: adding to the beginning, adding to

the end, and deleting one of the extreme

elements. You can greatly simplify the above

procedures if you set two barriers-the dummy

first and last elements. Thus, there are always

at least two barrier elements in the list, and all

working nodes are located between them.

Many problems when working with a

single-linked list are caused by the fact that it is

impossible to go to the previous element in

them. It is a natural idea to store a link in

memory not only to the next item, but also to

the previous item in the list. To access the list,

not one pointer variable is used, but two-a

reference to the "head" of the list (Head) and to

the "tail" – the last element (Tail).

Each node contains (in addition to useful data)

a link to the next node (the next field) and the

previous one (the prev field). The next field for

the last element and the prev field for the first

element contain NULL. The node is declared as

follows:

In the future, we will assume that the

head pointer points to the beginning of the list,

NOVATEUR PUBLICATIONS
JournalNX- A Multidisciplinary Peer Reviewed Journal

 ISSN No: 2581 - 4230
VOLUME 6, ISSUE 12, Dec. -2020

325 | P a g e

and the Tail pointer points to the end of the

list:

For an empty list, both pointers are NULL.

Operations with a two-linked list

 Adding a node to the top of the list

When adding a NewNode to the top of the list,

you should

1) Set the newNode node's next link to the

head of an existing list and its prev link to

NULL;

2) set the prev link of the former first node (if

it existed) to NewNode;

3) set the list head to a new node;

4) If there were no items in the list, the tail of

the list is also set to the new node.

The following procedure works

according to this scheme:

Due to the symmetry, adding a

NewNode to the end of the list is quite similar.

In the procedure, you need to replace Head

with Tail and Vice versa, as well as change prev

and next.

Given the NewNode address of the new

node and the p address of one of the existing

nodes in the list. You need to insert a new node

after p in the list. If p is the last node, the

operation is reduced to adding it to the end of

the list (see above). If node p is not the last

node, the insertion operation is performed in

two stages:

1) Set the new node's links to the next node

after the data (next) and the one before it

(prev);

2) set the links of neighboring nodes to

include NewNode in the list.

This method is implemented by the

following procedure (it also takes into account

the possibility of inserting an element at the

end of the list, which is why the parameters are

passed references to the head and tail of the

list):

Adding a node before the specified one

is done the same way.

Passing through a two-linked list can be

performed in two directions – from head to tail

(as for a single-linked list) or from tail to head.

This procedure also requires a reference

to the head and tail of the list, because they

may change when you delete the last item in

the list. The first step is to set the links of

neighboring nodes (if there are any) as if the

node being deleted would not exist. Then the

node is deleted and the memory it occupies is

freed. These steps are shown in the figure

below. Separately, it checks whether the node

being deleted is the first or last node in the list.

Sometimes a list (single-linked or

double-linked) is closed in a ring, that is, the

next pointer of the last element points to the

first element, and (for double-linked lists) the

prev pointer of the first element points to the

last. In such lists, the concept of the "tail "of the

list does not make sense to work with it, you

need to use a pointer to the" head", and any

element can be considered a" head".

We can develop programs in a

convenient way using the above lists. For

example, in the following program, such

conditions as adding an item to the list in such

a way that the list is bewrilgan and the queue is

used, deleting the item, removing the above

elelment, knowing the length of the queue are

included.

Int data [N]; the elements of the list of

the whole type are given in the form of a mass,

which is equal to N. Structure Queue we will

declare the queue in structure view. The

beginning of the list is Int first; if Int last; end of

the list. In Uhbu program we will be

announcing the list in turn view as well as its

elements in a massive view. Void Creation

(Queue *Q) function the name of the queue that

does not return a value. {Q - >first=Q –>last=1

;}-Determine the queue through Q and we

know that there is an indicator at the beginning

and end of the list and equalize them. The

queue from this we know that the last elelment

is equal to 1. Bool Full (Queue *Q) –we check if

NOVATEUR PUBLICATIONS
JournalNX- A Multidisciplinary Peer Reviewed Journal

 ISSN No: 2581 - 4230
VOLUME 6, ISSUE 12, Dec. -2020

326 | P a g e

the list items are empty or not empty.

If (Q->last===Q->first) return true - true

if the condition is fulfilled, otherwise false Else

return false; Void Add(Queue *Q)-add elements

of the function's value non-returnable queue;

Int value-whole value; If ((Q->last%(N-

1))+1==Q->first) if the sum together of the last

queue measurement of less than one is equal to

its first element, otherwise Q->data[Q-

>last]=value-to the value,q->last=(Q->last%(n-

1))+1-If equal to the last element, respectively,

the element is added; void delete(queue *Q)-

the element of the queue that does not return

the value is deleted; q->First = (Q->first%(N-

1))+1-if the first index is equal to the

percentage of the first low element, the queue

element is deleted; int;

{Return Q - >data [Q->first];} - sets the

value; Int Size (Queue *Q)-queue width;

If (Q->first>Q->last) if the first item is on

the floor from the last item, return (N-1)-(Q-

>first-Q->last)-returns a value, otherwise Else

return Q->last-Q->first; Void main () - main

function; Setlocale(LC_ALL,"Russian")-for text

application in Russian; Queue Q-call queue;

Creation(&Q) - create queue;

#include <iostream>

Using namespace STD;

Const int N=6; // turn scale

Struct Queue

{

Int data [N]; // Massiv's information

Int first; // initial indicator

Int last; // latest indicator

};

Void Creation (Queue *Q) // create queue

{Q->first=Q->last=1 ;}

Bool Full (Queue *Q) // check the gap of the

queue

{

If (Q->last==Q->first) return true;

Else return false;

}

Void Add (Queue *Q) // add element

{

Int value;

Cout«»\nYechim > «; cin»value;

If ((Q->last %(N-1)) +1==Q->first)

Cout«»\n……………… \n\n»;

Else

{

Q->data [Q->last] =value;

Q->last= (Q->last %(N-1)) +1;

Cout«endl«» added item respectively \n\n» ;}}

Void Delete (Queue *Q) // item deleted

{

Q->first= (Q->first %(N-1)) +1;

Cout«endl«» the queue item is deleted \n\n»;

}

Int Top (Queue *Q) // extraction of the starting

element

{Return Q->data [Q->first];}

Int Size (Queue *Q) // turn width

{

If (Q->first>Q->last) return (N-1)-(Q->first-Q-

>last);

Else return Q->last-Q->first ;}

Void main () // main function

{

Setlocale(LC_ALL,»Rus»);

Queue Q;

Creation (&Q);

Char number;

Do {

Cout«»1. Add item » «endl;

Cout«»2. Delete item »«endl;

Cout«»3. Removing the above item »«endl;

Cout«»4. Knowing the length of the queue

»«endl;

Cout«»0. Output \n\n»;

Cout«» Command number > «; cin»number;

Switch (numbe) {

Case '1': Add (&Q);

Break;

//---—

Case '2':

NOVATEUR PUBLICATIONS
JournalNX- A Multidisciplinary Peer Reviewed Journal

 ISSN No: 2581 - 4230
VOLUME 6, ISSUE 12, Dec. -2020

327 | P a g e

If (Full (&Q)) cout«endl«» The queue is empty

\n\n»;

Else Delete (&Q);

Break;

//---—

Case '3':

If (Full (&Q)) cout«endl«» The queue is empty

\n\n»;

Else cout«»\n item: ««Top (&Q) «»\n\n»;

Break;

//---—

Case '4':

If (Full (&Q)) cout«endl«» The queue is empty

\n\n»;

Else cout«»\n item width: ««Size (&Q) «»\n\n»;

Break;

//---—

Case '0': break;

Default: cout«endl«» command is clear \n\n»;

Break ;}} while (number! ='0');

System («pause») ;}

In conclusion, these amenities will give

their effect in the future. A number of works

being done in our country are developing in

vain. In addition to this work, we should work

together with young people.

REFRENCES:

1) Adam Drozdek. Data structure and

algorithms in C++. Fourth edition. 2013.

Chapter 3.

2) Resolution of the Cabinet of Ministers of the

Republic of Uzbekistan "On measures to

further improve the Governmental portal of

the Republic of Uzbekistan on the Internet

with regard to the provision of open data" of

August 7, 2015 №. 232.

3) J. A. Day and J. Web lecture intervention in a

human-computer interaction course,” IEEE

Transactions on Education, vol. 49, no. 4, pp.

420–431, November 2006.

